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[1] We propose a dynamical model for channels incised into an erodible bed by
subsurface water flow. The model is validated by the time-resolved topographic
measurements of channel growth in a laboratory-scale experiment. Surface heights in the
experiment are measured via a novel laser-aided imaging technique. The erosion rate in
the model is composed of diffusive and advective components as well as a simple
driving term due to the seeping water. Steady driving conditions may exist whenever
channels are incised into a flat and level erodible bed by a water table replenished via
steady (on average) rainfall. Under such steady driving conditions, the model predicts
an asymptotically self-similar growing shape for the channel transects. Conversely, given a
transect shape that evolved under steady driving conditions and an estimate of the
erosion rate at the bottom of the channel, granular transport coefficients can be inferred
from the static channel shape. We report an estimate of these transport coefficients for a

system of ravines incised into unconsolidated sand in the Apalachicola River basin,

Florida.

Citation: Lobkovsky, A. E., B. E. Smith, A. Kudrolli, D. C. Mohrig, and D. H. Rothman (2007), Erosive dynamics of channels
incised by subsurface water flow, J. Geophys. Res., 112, F03S12, doi:10.1029/2006JF000517.

1. Introduction

[2] Fluvial erosion commonly results in formation and
growth of channels [Schumm et al., 1984]. Several aspects
of channelization are of interest, including the channeliza-
tion instability [Montgomery and Dietrich, 1988, 1992;
Forterre and Pouliquen, 2003], growth of the channel
network [Dunne, 1980; Willgoose et al., 1991; Howard,
1994] and the dynamics on an isolated channel [Dietrich
and Dunne, 1993]. Understanding erosive channel dynam-
ics requires both the knowledge of water fluxes as well as
an adequate model of the sediment transport. Channels act
to focus the flow of water, either overland [Horton, 1945],
or, ubiquitously but less commonly appreciated, beneath the
surface [Dunne, 1990; Baker et al., 1990]. Here we focus on
the latter.

[3] From a physical point of view, the chief advantage of
studying channels driven by subsurface water flow or
seepage is that the focusing of the water fluxes depends
mostly on the shape of the channel if the local hydrology is
uniform. On the other hand, the focusing of overland flows
depends on the topography of the basin which drains into
the channel. Therefore, when driven by subsurface flows, it
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is possible to study isolated channels only weakly coupled
to the evolution of the entire basin.

[4] The subsurface water flows, which obey the well-
established Darcy’s law, can be readily computed. A pre-
dictive model of a single channel, therefore, depends on a
precise description of the sediment transport in the channel.
Such a model should predict the evolution of the channel’s
shape. It should also allow the fundamental sediment
transport properties to be inferred from a measurement of
a static channel. The channel shape therefore carries a
signature of the underlying sediment dynamics.

[5s] Following Jaggar’s pioneering experiment [Jaggar,
1908] many other experimental studies of erosive dynamics
driven by subsurface flows have been performed. The
previous studies such as those of Kochel et al. [1985],
Kochel and Piper [1986], Howard [1988] and Kochel et al.
[1988] were chiefly concerned with analogy to Martian
valleys. Previous experimental work suggests that ground-
water piracy plays a dominant role in the development of
channels. Howard and McLane [1988] studied the rate of
seepage erosion in a narrow two-dimensional flow tank and
formulated a hypothesis regarding the control of the water
table geometry on the longitudinal channel profile. Howard
[1994, 1995] has carried out computer simulations of valley
development by groundwater sapping.

[6] Our approach is to conduct well-characterized labo-
ratory experiments in which laser-aided imaging is used to
obtain the full time-resolved channel shape [see also Ni and
Capart, 2006]. We use these unique dynamical data to
develop a quantitative description of the evolving channel
transects. It is precisely our ability to collect time-resolved
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Figure 1. Contour map of approximately 20 km? area including branched sapping canyons in Liberty
County, Florida. The channels are 20—50 m deep. As discussed in section 5, the marked channel was
mapped with a laser range finder. (From the 1990 USGS map of the Bristol quadrangle, Florida. The
1000-m Universal Transverse Mercator grid provides the scale and the north (up) direction).

topographic information in the experiment that makes this
kind of dynamic modeling possible. The main result of the
modeling effort relates the erosion rate in the entire channel
to (1) the erosion rate at the bottom, (2) a nonlinear relation
between the uphill sediment advection rate and the slope,
and (3) a diffusion constant. The resulting evolution equa-
tion, which is crafted for the specific case of subsurface
driven erosion, predicts a characteristic growing channel
shape. Although the qualitative mechanisms of seepage-
driven channel dynamics have been understood for some
time [Dunne, 1990], to our knowledge no previous study
has yielded such quantitative predictions.

[7] The proposed evolution equation is coarse-grained
because the time resolution of our height data is not
sufficient to study the complicated grain-scale physics.
The timescale relevant to our experiment is short compared
with the time it takes to significantly alter the channel shape,
but long compared to the time it takes for an avalanche front
to propagate across the channel. A quantitative model based
on the intermediate-scale measurements can be used to
make important predictions for the evolving shape of the
entire channel. Although it is obtained by averaging over
many small-scale avalanches, our mesoscopic model still
contains a signature of the microscopic granular dynamics
[e.g., Dietrich et al., 2003]. It can be used to constrain
possible microscopic transport mechanisms and serve as a
guide for selecting particular experimental regimes best
suited for looking at the underlying microscopic granular
dynamics.

[8] We test the predictions of our model in the remarkable
network of channels located in the Apalachicola River
basin near Bristol, in the western highlands of the Florida
Panhandle. Schumm et al. [1995] suggest that these V-shaped
valleys terminating in amphitheater heads are driven by

groundwater sapping. Here we present a preliminary com-
parison with the model (a detailed description of the erosive
processes at the field site is deferred to a future publication).
The channels, examples of which are shown in Figure 1 are
incised into the well-sorted unconsolidated sand of the
Citronelle Formation. The infiltration capacity of this sand
is high enough to preclude any overland water flow. We
argue that the channels have been steadily driven by subsur-
face flows for a long enough time to reach an asymptotic
state self-similar shape predicted by our model. We provide
measurements to show that one of the channels is indeed well
described by the asymptotic theory. From the fit and an
estimate of the bottom erosion rate we are also able to extract
all of the dynamical transport coefficients.

[0] In the next section we introduce our experimental
apparatus and describe our method for acquiring the time-
resolved topography. We detail our experimental procedure
for growing a single channel and describe its morphology.
We develop and test our model in section 3. The predictions
of the model for the case of steady driving are explored in
section 4. In section 5 we build the case for steady driving
by discussing the network of sapping canyons in the Florida
Panhandle. We also examine implications of the model’s
predictions for these canyons. Finally we summarize our
results in section 6.

2. Experimental Method

[10] Figure 2 shows a schematic of our experimental
apparatus, described in more detail elsewhere [Schérghofer
et al., 2004; Lobkovsky et al., 2004]. Water enters beneath a
pile of identical glass beads (mean diameter 0.5 mm,
standard deviation 0.1 mm) through a square mesh of size
0.4 mm and exits at the foot of the pile through the same
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Figure 2. Schematic of our experimental setup. Constant
head at the inlet mesh beneath the pile is maintained via an
outflow pipe.

kind of mesh. The water flux is controlled by the height #
of the water column in a reservoir behind the pile. The slope
of the initial sandpile as well as the water column height are
the control variables of the experiment. A scanning laser
imaging technique allows us to measure the evolving height
of the sandpile with grain-scale resolution in space and
1-min resolution in time. A laser sheet scans the surface once
every minute while a digital camera acquires images from an
oblique angle. The height of the surface is then extracted
from an image of the intersection of the laser sheet with the
granular surface. Resolution is limited by the laser light
scattering off the rough surface of the pile. Specifically, the
uncertainty in the measurement of the pile’s height is 0.5 mm
and the uncertainties in the x and y position measurements
are | mm.

[11] Schérghofer et al. [2004] and Lobkovsky et al. [2004]
describe the phenomenology of the pattern formation in this
experiment and quantify the transitions between various
modes of granular flow: surface flow (responsible for the
formation of the channel network), slumping (bulk frictional
instability) and fluidization. Here we focus on the evolution
of an isolated channel grown from a small initial channel of
triangular cross section. We are able to set the water level H
in such a way that sediment is driven only in the channel. A
contour map of a well-developed channel obtained with our
laser imaging setup is shown in Figure 3. We find that the
late stage morphology of the channel is insensitive to the
exact initial condition as long as erosion occurs only within
the incised channel. The initial incision must be sufficiently
deep to guarantee that water level can be set at such a level
that erosion only occurs within the incised channel and not
on the surface of the pile.

[12] A well-developed channel evolves via small-scale
avalanches in its head and bedload transport of the sediment
through the valley. One-minute resolution in time is suffi-
cient for a detailed study of the evolution of the channel’s
shape since a typical erosion rate is fractions of a grain
diameter per minute. A typical avalanche front propagates
across the head in a matter of seconds. Therefore our shape
acquisition method yields the evolving topography averaged
over many individual avalanches. The characterization of
the channel shape on the timescale that is large compared to
the avalanche timescale is useful for making predictions on
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the field scale, as exemplified by the Florida’s sapping
canyons discussed in section 5.

3. Experimental Results and Mesoscale Model

[13] The characteristic time 7,, for the relaxation of the
water table toward its steady state position is of the order
of the channel width W ~ 10 cm divided by the saturated
hydraulic conductivity K =~ 0.3 cm/s (measured by
Schorghofer et al. [2004]). Thus 7,, ~ 30 s. On the other
hand, the time 7., to significantly alter the shape of the
channel is obtained by dividing the characteristic channel
depth of 1 cm by the characteristic erosion rate of
0.02 cm/min yielding 7., ~ 3000 s. Thus we can think of the
water table adjusting instantaneously to changes in the
channel shape.

[14] Our experimental study is directed at obtaining an
expression for the erosion rate in the channel based on the
analysis of the time-resolved topography measurements. We
construct the expression for the erosion rate from consid-
erations of symmetry and the assumption of self-similar
channel growth delineated in the following three paragraphs
and test it against the data. Such an approach is appealing
since we do not need to consider the detailed grain-scale
flow mechanisms and contend with a number of existing
phenomenological approaches to modeling two-phase flow
[e.g., Yalin, 1977]. Note also that the equation proposed
below is specific to the case of erosion in a channel driven
at the bottom.

[15] Let A(x, y, t) denote the height of the pile measured
relative to its surface before the channel forms. Thus 7 is
identically zero before erosion sets in, negative in areas of
net erosion, and positive in areas of net deposition. The
height /% is as a function of the cross-slope coordinate x, the
downslope coordinate y, and time 7. In general, the erosion
rate Oh/Ot depends on the local water and sediment fluxes,
and features of the local topography, like the slope |VA|,
the curvature Vzh, etc. For an isolated channel, the shape
of the water table and therefore the water fluxes are set by
the shape A(x, y, f) of the channel. The characteristic
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Figure 3. Contour map of a single channel after one hour
of evolution for a pile of slope 7.8°. Contour labels are in
millimeters.
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timescale for the response of the sediment flux to the
changes of the pile’s shape is the time for a sediment
particle to travel the length of the pile. The observed
sediment velocities in our experiment are at least several
millimeters per second. Thus the sediment flux adjusts
quickly to the changes in the pile’s shape.

[16] Since all of the factors which set the local erosion
rate are determined by the shape A(x, y, f) of the pile’s
surface, we seek an expression for the erosion rate 04/0t in
terms of £, its spatial derivatives and, possibly, integrals. In
general, the local water and sediment fluxes depend on the
shape of the entire pile. Thus, in general, there is a global
dependence of the erosion rate on the surface shape. We
argue that when the channel grows in a self-similar manner,
the global dependence on the shape can be replaced by a
single scale factor which characterizes the channel size. We
therefore assume that channels grow in a self-similar
manner and show below that this assumption is consistent
with the experiment.

[17] So far we have argued that, when channels grow
slowly and in a self-similar manner, the erosion rate is a
function of the local topography #, its spatial derivatives,
and an overall scale factor which we choose to be the depth
|o| of the channel. We simplify the problem further by
focusing on the evolution of transverse channel sections. We
therefore focus on the dependence of the erosion rate on
derivatives of & with respect to the transverse coordinate x
only. Variation of the water flow in the downslope
y direction is accounted for via y-dependent coefficients.
This approximation is reasonable everywhere except the
leading portion of the channel’s head where the direction of
the downslope gradient varies rapidly. Grains and micro-
scopic avalanches enter and leave any given channel
transect. Projected onto this transect, the transport of height
h is no longer volume conserving.

[18] The expression for the erosion rate should contain
terms which represent driving as well as transport. Transport
terms can in general be diffusive or advective. Diffusive
granular transport has been observed in the field [McKean et
al., 1993] and has long been considered a major process
[Culling, 1960]. We therefore include 4, in our equation
(subscripts denote differentiation). Advective transport,
which is nonlinear in general, is represented by some
function of A,. Erosive driving due to seeping water should
depend on the overall scale factor /. Since we assume that
the channel and therefore the shape of the water table
evolves in a roughly self-similar manner, the driving term
can only depend on /4/hy. We therefore propose that

ht:thx76|hx‘ 7>\h)2(7/]‘@(h/h0 7f)7 (1)

where the Heaviside theta function is defined by O(z) = 1
if z> 0 and ©(z) = 0 otherwise. The empirical constants
u, v, A\, 0, and f are functions of time ¢ and downslope
coordinate y. They encode the microscopic properties of the
grain dynamics as well as the strength of the driving water
flow. The diffusion constant v reflects the rate of smoothing
of local perturbations. The last term on the right hand side
represents driving due to the seeping water. We assume
that the effect of the seeping water is to add a constant p
to the erosion rate when the local depth / is greater than a
fraction f of the channel depth /.. Whereas other choices
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for the driving term are possible, an additive constant
erosion rate below the intersection of the water table with
the channel is perhaps the simplest. Our data are
sufficiently noisy to preclude a possibility of a quantitative
comparison between different choices for the driving term.
As we will see below, as long as the driving term is a
function of A/hy only, the channel shape tends toward a
self-similar solution.

[19] The second and third terms on the right hand side of
(1) are advective. We hypothesize, in accord with Boutreux
et al. [1998], that perturbations are advected only up the
slope. 6|h,| corresponds to advection of perturbations with
velocity § independent of slope, whereas M2 corresponds to
advection with velocity A|A,|, which grows linearly with
slope.

[20] As mentioned in the introduction, the time resolution
of our experimental data are insufficient to make contact
with the underlying microscopic dynamics (e.g., ava-
lanches). Although this precludes development of a micro-
scopically based transport theory, we show below that our
macroscopic phenomenological description nevertheless
allows us to connect channel geometry to the transport
coefficients.

[21] To establish that equation (1) is a good representation
of the erosion rate in our experiment, we measure a number
of points /' in a narrow window in time and a window in the
downslope coordinate y shown in Figure 5. For each
location 7 in this space-time window we compute the space
derivatives 4, and /. and the time derivatives h; of the
height and fit the resulting data cloud via least squares to
equation (1). More specifically, we minimize the sum F"=
SO (= vhL, + S|+ NHY? + u©h'hy — f))* over the
space-time window with respect to the variation of the five
parameters v, 0, A\, u, and f. Because F' has many local
minima, we use the method of simulated annealing [Press et
al., 1986, and references therein] to find the global minimum
of F'in the five-parameter space. Although the errors and the
correlations between the values of the parameters which
globally minimize F, can be obtained by computing the joint
distribution of the parameters in equilibrium at some tem-
perature, we did not compute them.

[22] In Figure 4 we illustrate the relative importance of
the advective, diffusive and driving terms by plotting their
respective contributions to the erosion rate. As shown in
Figure 4a, the advective terms make the largest contribution
to the erosion rate with the nonlinear term (\) comparable to
the linear term (). Data points with slopes smaller than 0.7,
comprising over 95% of all data, have been used in the fit.
A discrepancy between the model and the data occurs for
larger slopes where the erosion rate saturates. A measurable
contribution to the erosion rate due to diffusion is shown in
Figure 4b. While the extracted positive granular diffusivity v
is statistically significant, diffusion is a negligible source of
the erosion rate. The driving, depth-dependent term, shown
in Figure 4c, is approximated by a step function although the
data show perhaps a more gradual transition. For steady
driving, discussed further below, we expect the width of the
transition region to remain constant.

[23] The picture that emerges is of a channel driven below
a certain fraction of its depth resulting in nonlinear uphill
advection of heights. As the channel grows, the step-
function approximation to the driving term should improve
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Figure 4. Partial erosion rate at £ = 39 min plotted against (a) the slope, (b) the curvature, and (c) the
fractional channel depth. Each symbol represents an average over several hundred data points. Partial
erosion rate is obtained by subtracting from the measured % terms on the right hand side of equation (1)
which depend on the variables other than the one against which the partial erosion rate is being plotted.
For example, in Figure 4a we plot the measured /# minus the diffusive and the driving terms calculated
from the measured topography. Spatial derivatives of 4 were calculated using a smoothing scale £&. We
found that there exists a £ intermediate between the grain size and the channel size, for which the fits
do not depend on &. Lines are drawn using the parameters p = 0.185 mm?*/min, ¥ = 0.056 mm/min,
A = 0.818 mm/min, 6 = 0.244 mm/min, /= 0.67 extracted by a least squares fit of the unbinned data
to equation (1). Error bars represent two standard deviations of the mean.

with time. A different driving term, as long as it is a
function of A/hy and is nonzero only below a fraction of
the channel depth, changes the picture quantitatively but not
qualitatively.

[24] We extracted model parameters near a transect,
shown in Figures 5a and 5b, that is fixed with respect to
the location of the water inlet. As the channel migrates up
the slope, the geometry of the water flow changes. As a
result, the model parameters, presented in Figure 6, evolve.
The chosen transect is located initially ahead of the predug
channel. As the channel head passes this transect, the
driving rate p peaks and then declines. The values of the
effective advection speeds ¢ and A also decrease since they
are related to the driving. A possible explanation for the
change in the effective advection speeds is that we are
measuring advection averaged over many avalanches. As
the driving, (i.e., the erosion rate at the channel’s bottom)
decreases, the avalanche frequency, and therefore the effec-
tive advection speed, decreases as well. The diffusion coef-
ficient v = 0.039 + 0.033 mm*/min (or 7 x 10~'® m%/s) and
the fractional driving /= 0.52 + 0.14 fluctuate around their
respective means which are roughly time-independent.
Large fluctuations in the extracted parameters reflect the
underlying uncertainties in the measurement of the heights
h(x, y, 1).

[25] As a consistency check of the model’s validity, we
should be able to use the extracted time-dependent model
parameters to reproduce the evolution of the transect shape.
Figure 7 compares the measured shapes of this transect with
the shapes evolved via equation (1) with the time-dependent
coefficients extracted by the least-squares fit. Agreement
indicates that the right-hand side of equation (1) captures
the essential features of the erosion rate in the channel
geometry. In other words, the difference between the
measured erosion rate and the inferred right-hand side of
equation (1) is small and uncorrelated with any feature of
the topography. The rate of advance of the channel side-
walls and the receding rate of the channel bottom are

determined by different combinations of the parameters.
The agreement of the shapes evolved via equation (1) with
the experimental data shows that both rates are in accord
with the experiment.

4. Steady Driving

[26] The model coefficients in our experiment, intimately
related to the geometry of the water flow, change markedly
during the evolution of the channel as illustrated in Figure 6.
In other geometries these coefficients can remain approxi-
mately constant over a long time. As we argue in more detail
in the following section, steady driving conditions exist in
the array of seepage driven channels in the Florida Panhandle
[Schumm et al., 1995] that receive water from a water table
curved by their presence. In this geometry, the water flux to
the channel’s head is determined only by the curvature of the
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Figure 5. Contour plots of the laser height data at (a)
15 min and (b) 115 min after the start of the water flow.
The thick line shows the transect from which the data are
collected and used to extract the model parameters shown
in Figure 6. Contour interval is 5 mm.
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Figure 6. Example of the evolution of the coefficients x, A
and 6 (measured in mm/min) extracted using equation (1)
from the data using taken near a fixed transect illustrated in
Figure 5. The head of the channel arrives to this transect
approximately 1 min after the start of the experimental run.

water table near the head and is thus independent of the
channel head location. Consequently, the driving term in
equation (1) is independent of the head location and hence
time (on a timescale long enough to average over the
variability of precipitation). It is therefore appropriate to
examine the long-time behavior of equation (1) with constant
coefficients. We show in Appendix A that an asymptotically
self-similar solution exists when driving is steady. The
resulting predictions for channel geometry are likely to be
relevant to field-scale geologic problems.

[27] While relegating the details of the calculation to the
appendix, we describe the main features of the asymptotic
solution here. It turns out that after a time long compared to

h(x,t) (mm)

-100 0
X (mm)

100

Figure 7. Measured height across the chosen transect at
t =15, 45, and 115 min compared to the prediction of
equation (1). The smoothed shape of the transect at #= 15 min
was used as the initial condition. Actual time-dependent
parameters presented in Figure 6 were used.
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Figure 8. Vertically exaggerated illustration of the asymp-
totic channel shape. Flat bottom is joined onto parabolic
flanks followed by straight flanks.

T = v/i?, the channel shape “forgets” its initial condition
and approaches a state in which its transects only increase in
scale while retaining their overall shape. This self-similar
solution implies that the channel depth d grows linearly with
time at a rate u, while the transect shape scaled by the
depth %/d approaches a function 7g(x/d) of the transverse
coordinate x scaled by the depth d. As we show in the
appendix, the shape function 7, (see Figure 8) consists of a
flat bottom, parabolic flanks in the driven region (below the
point where the water table emerges into the channel)
joined onto straight flanks of slope

so = ,u/A(l-I—s/l—f)‘ (2)

Since the channel is driven from below, this angle should
correspond to the angle of repose of dry sand. The half-
width W of the channel grows linearly at a rate

v =% 54 s 3)
T

The asymptotic shape can be used successfully to fit
channel cross sections in our experiment which evolve in
nonsteady conditions. However, the ratios of parameters
extracted by such an asymptotic fit deviate greatly from the
parameters extracted by the fit of the equation (1) to the data
cloud, because the shape of the channel at the time of the fit
retains a memory of its prior dynamical state. The diffusive
term acts to smooth the slope discontinuities at the edges of
the channel. We are able to find an exact solution to
equation (1) near these corners, thereby obtaining the
characteristic radius of the smooth channel edges,

2v
= i (4)

The self-similar solution connects the static profile of the
channel, including the angle of repose, with the dynamic
granular transport coefficients. Given a transect shape that
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Figure 9. Contour map of the chosen channel’s head.
Contour interval is 1.5 m. We mark points at which the
height measurements are taken.

has evolved under steady driving conditions, a fit to the
asymptotic shape as well as the smooth edges yields £, Mu,
6/, and v/u. Thus an independent estimate of the bottom
erosion rate p is all that is required to recover all of the
dynamic transport coefficients in the model.

5. Comparison With Field-Scale Seepage
Channels

[28] Working in the Florida Panhandle, Sellards and
Gunter [1918] (as cited by Schumm et al. [1995]) recog-
nized that certain linear valleys were formed by spring
sapping. A spring emerged at the base of amphitheater
heads which terminated each valley. Recently, Schumm et
al. [1995] have described in detail the characteristic features
of the topography of these so called “‘steepheads.” Accord-
ing to Schumm et al. [1995], these valleys are cut into the
Plio-Pleistocene Citronelle Formation which consists of
highly permeable well-sorted unconsolidated sand. Owing
to the high infiltration capacities of Citronelle sands ranging
from 8 to 12 inches per hour [Overing and Watts, 1989]
(cited by Schumm et al. [1995]), virtually no overland water
flow is observed. Rainwater therefore recharges the water
table which emerges as spring heads at the bottom of the
valleys. Drilling did not reveal inhomogeneities in the
hydrology down to depths of several meters below the valley
bottoms [Schumm et al., 1995]. It is therefore likely that the
dynamics and the morphology of the network of the ““steep-
heads” is controlled purely by the dynamics of sand in the
channels driven by the ground water seepage.

[20] We performed our own preliminary survey of the
sapping canyons which drain into Apalachicola River. A
USGS contour map of the canyons located on the Nature
Conservancy’s Apalachicola Bluffs and Ravines Preserve is
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shown in Figure 1. We verified the homogeneity of the sand
layer (which extends down to approximately 100 feet below
flat ground level) by granulometric measurements of sam-
ples taken from different parts of the slope. We mapped out
the topography of the head of one of the channels (marked
on Figure 1) using a laser range finder. The contour map
together with the locations of the measurement points is
presented in Figure 9. Lack of data in the left upper corner
of the graph results in the distortion of the computed
contours.

[30] We assume that shape of the channel has reached the
asymptotic self-similar shape. For this to happen driving
must be steady for at least time 7 = /. We estimate these
parameters and then a posteriori justify the assumption of
asymptotic shape. In Figure 10 we show the measured
heights of the longest transect normal to the axis of the
channel together with a fit to the asymptotic self-similar
shape with smooth edges. The agreement is good except
near the bottom, where presumably sediment is piled up
following a sidewall slump. As a result the error in the
estimate of &/u is rather large (30%). From the fit we
obtain the dimensionless ratios f~ 1, MV~ 2.8 £0.2, §/u ~
0.3 £ 0.1 and the smoothing scale R ~ 10 + 1 m of the
channel’s edges. Using expression (2) for the asymptotic
flank, we obtain the slope of 31°, in good agreement with the
angle of repose of dry sand.

[31] These results may be understood as follows. First,
f =1 because the average rainfall rate » ~ 1.5 m/year is
such that even a small area of contact of the water table
with the channel is sufficient to drain the rainfall into the
channel. We estimate the extent ¢ of the sapping face by
assuming that the slope of the water table near the channel
is roughly equal to the slope sy of the channel wall. The
resulting subsurface flow velocity Ks, is responsible for
draining the rainfall flux »D, where D ~ 100 m is the half-
distance between the channels. Thus ¢Ks, ~ rD and
therefore ¢ ~ rD/Ksy ~ 2 cm. Since the channels are
roughly 20 meters in depth, the fractional driving depth
f=1(20.0 — 0.02)/20.0 ~ 1 as expected.

[32] We also seek an independent estimate of the bottom
erosion rate y to obtain the advection speeds A and 6. We

y, (m)

Figure 10. Measured height of the transect (symbols)
fitted to the asymptotic transect shape with the smooth
channel edges according to equations (AS8) and (Al1).
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assume that the canyons came into existence around the
same time as the Citronelle formation itself, i.e., around the
Last Glacial Maximum in the sea level, or approximately
100,000 years ago [Fleming et al., 1998]. In this time the
channels reached a depth of roughly 50 meters where they
join the Apalachicola River. Assuming that the channels
grew at a roughly constant rate we estimate p ~ 5 X
10~"" m/s or about 0.5 mm/year. On the other hand the head
advance rate can be estimated by assuming that it was
constant throughout its history and resulted in 5 -km-long
channels. It is thus about 100 times larger than the bottom
erosion rate or about 5 cm/year. The weakest point of this
argument is that it assumes that the Apalachicola River itself
has not moved.

[33] The estimate of the bottom erosion rate is perhaps
most useful for obtaining the value of the diffusion constant
v since other estimates of v exist in the literature. By fitting
the data to equation (A11) we find the radius of curvature of
the channel’s edge to be R ~ 10 m. This implies that the
diffusion constant is v ~ 7 x 107'° m?%s, which is in
agreement with the value of the diffusion constant we
measure in our experiment. This value for v is bracketed
by estimates of 107 m*s for clay soils [McKean et al.,
1993] and of 2 x 10" m?/s for granular soils [Reneau et
al., 1989]. Both works assumed purely diffusive transport.
There is likely a strong dependence of the effective diffu-
sion constant on the particle size as well as the precise
nature of the dominant disturbance mechanism. Whereas in
the tabletop experiment the flow of water and grains is the
only such mechanism, other processes can dominate in the
field. Examples of disturbance mechanisms which do not
originate from subsurface water flow are rain or bioturbators
(e.g., vegetation, burrowing animals [Yoo et al., 2005]). It is
unclear at this point whether the fact that we obtain the same
value of the diffusivity in the field and in the experiment
signals the dominance of the hydraulic processes originating
in the subsurface water flow.

[34] Given an estimate of the granular diffusivity we can
compute the characteristic time 7 for reaching the asymp-
totic shape: 7 = v/u* ~ 9000 years. This time is an order of
magnitude shorter than the apparent age of the channels.
Therefore it is likely that the asymptotic self-similar state
has been achieved.

[35] The estimate of the bottom erosion rate as well as the
fit of the transect shape to the asymptotic shape also yields
the values of the effective advection speeds ¢ ~ 1.5 X
107" m/s and A\ =~ 1.4 x 107" m/s. These values can be
used to check the predicted channel half-width W using
the channel edge velocity from equation (3). We find that
W =~ 100 m which compares well with the observed half-
width of the channels.

6. Discussion and Conclusions

[36] We conducted a laboratory experiment in which
channels are incised into a granular bed by subsurface water
flow. Using high-resolution topographic data obtained with
a laser imaging system we constructed and tested an
effective model for the evolution of channel transects. In
this model, the erosion rate is composed of the local
diffusive and nonlinear advective terms as well as a nonlo-
cal driving term which depends on the overall depth of the

LOBKOVSKY ET AL.: CHANNEL DYNAMICS

F03S12

channel. With constant coefficients, the evolution equation
admits a unique asymptotic similarity solution. Thus, under
steady driving conditions, the shape of the channel’s trans-
ects approaches the characteristic form while growing with
a constant rate. Thus the similarity solution affords a way of
extracting dynamic information such as granular transport
coefficients from a static shape of the channel that is known
to have evolved under steady driving conditions. Conversely,
the transport coefficients determine the asymptotic channel
shape. In particular, the ratio of the nonlinear advection
speed A to the bottom erosion rate y is directly related to
the angle of repose of dry sand.

[37] When, as in our experiment, dynamic topographic
information is available, the fit of the model to the data
yields the values of the effective diffusivity v, advection
speeds ¢ and ), and the bottom erosion rate y. Since our
description averages over individual avalanches, the trans-
port coefficients reflect the average rate of transport on a
long timescale. Thus they have more to do with the
frequency and size distribution of the avalanches than the
granular dynamics within an avalanche. In other words, our
advection term 6|h,| does not imply that a perturbation
travels uphill at rate 6, but rather that over a time long
compared to the characteristic interavalanche time, a per-
turbation migrates uphill with this rate as a result of many
fast avalanches.

[38] We hypothesize that the sapping canyons incised into
the Citronelle formation in the Florida Panhandle evolve
under steady driving conditions, and show that the asymp-
totic self-similar state has likely been reached. Under these
assumptions we are able to fit the channel shape to the
asymptotic solution of our model. Together with an inde-
pendent estimate of the bottom erosion rate ;. we recover all
transport coefficients in our model. The ability to extract
dynamic information from a static shape with a minimal set
of assumptions is the key strength of our model.

[39] The most natural next step is to extend the model to
three dimensions. Owing to sediment conservation, the
expression for the erosion rate in this case will have to be
the divergence of the sediment flux. Armed with a plausible
three-dimensional model, we expect to study the full chan-
nel shape including the geometry of the channel head, the
channel’s longitudinal profile, and the mechanism for the
side-branching instability. An important component of any
three-dimensional modeling will be understanding the
geometry of the water table in the presence of the compli-
cated network of channels. We expect several important
conclusions to emerge from the computation of the seepage
water fluxes. For example, a widely mentioned feature of
networks driven by seepage is the large angle of tributary
junctions [Schumm et al., 1995]. We anticipate that a simple
assumption that a tributary’s head grows in the direction of
maximum seepage flux coupled with a calculation of the
water table curvature will yield a justification for this
observation.

Appendix A: Calculation of the Asymptotic
Channel Shape

[40] We first nondimensionalize equation (1) by scaling
all lengths by a = v/p and time by 7 = v/u* and defining
8 = 6/p and o = Mpu. We use the same symbols for the
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scaled variables 4 and 7. The resulting nondimensionalized
evolution equation reads

hy = hy — Blhy| — ah? — O(h/ho —f). (A1)

We seek an asymptotically self-similar solution to equation
(A1) by introducing a time-dependent scale factor d(7) and
the scaled shape n(&, 1) = h(x, 1)/d(t), where £ = x/d(f). We
can choose d(f) in such a way that 7(0, £);..o.— 1, so that
d(?) can be interpreted as the channel depth at long times. In
anticipation of the asymptotic self-similar solution, we
expand 7(&, ) and d(¢) in a power series in 1/£. We obtain

1

n(&,1) :770(5)+; m&+... (A2)

d(t) =t+o(t), (A3)
where o(f) refers to a term which grows slower than 7 as
t — o0. The zeroth order shape 7(€) is independent of time.
Thus, if the expansion (A2) converges, the shape converges
to the similarity solution 7y(§). Substituting the expansion
(A2) into equation (1) and collecting orders of 1/¢ we obtain
at the lowest, time-independent, order,

m= b =]~ (i) -0 s ). (a9

where primes denote differentiation with respect to &. Note
that the diffusive term does not enter at the lowest order. The
physical reason for this is that, as we show below, diffusion
is important on a fixed length scale. As the channel grows
larger than this diffusive length, the £, term in equation (A1)
becomes negligible compared to the advection and the
driving terms.

[41] The solution to equation (A4) must be symmetric
with respect to £ — —& and smooth everywhere except at
the point &, of emergence of the water table where 74(&y) =
/10(0). Tt turns out that there exists a one-parameter family
of similarity solutions which satisfy these criteria. These
solutions are constructed as follows. In the driven region
|€] < |&o|, any piece of the parabola

() = (€ — 206 + F — da),

4o (43)

and a tangent line to this parabola at some arbitrary point &,

26(& = B) + B = & — 4a), (A6)

1
1mo(§) = 2o (
are solutions to equation (A4) as can be verified by
substitution. In the undriven region |{| > ||, the trivial
solution /2 = 0 as well as tangents to the parabola

m(€) = 4o (€~ 26¢) (A7)
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are solutions as verified by substitution. A smooth solution
symmetric around & = 0 is therefore constructed from five
pieces,

_17 0<£<£b7
_ 2
—1+%7 & <E<&,
— 2 — f—
O SRR STETT RN
_Af+S0(£_£O)? ‘;:O < 5 < 5@7
0, £> &
(A8)

The first piece is the flat bottom of the channel 7y = —1
tangent to the parabola (A5) at its apex &, = 8. The second
piece is part of the parabola (AS5) itself. The third piece
is another tangent to parabola (AS) at a point & such
that 8 < & < § + y/4a(l —f). The fourth piece is the
tangent of slope s to the undriven parabola (A7). Note that
7o 1s not smooth at &, (point of emergence of the water table)
and &, (the channel edge).

[42] It turns out that the diffusive term, though not present
at zeroth order, acts to select a unique member from the one-
parameter family of similarity solutions parameterized by
&,. The mechanism for the selection, verified by numerical
methods, is unclear to us at this time. The selected similarity
solution is one in which the third piece in equation (AS8)
(i.e., the tangent to the parabola (AS5)) is missing; that is,
&, assumes its upper limit £, = G + /4a(l —f). The
slope of the sidewall of the channel in the undriven region
is then simply

1
so:\/—a<1+\/l_—7). (A9)
The expressions for £, and &, are simple as well,
So=B+ V4ol —f), & =& +[/so=PF+as. (AlO)

Thus the asymptotic shape, illustrated in Figure 8, consists
of a flat bottom, and curved parabolic flanks in the driven
region followed by straight sidewalls of slope s.

[43] Besides selecting the unique self-similar shape, the
diffusive term also acts to smooth slope discontinuities at &,
and &,. An exact expression for this smoothing can be
obtained at the channel’s edge &.. In the vicinity of this
point, the slope s = A, is a hyperbolic tangent (verified by
substitution),

s(x,t):sz()(l —tanh%(x—vt)), (Al1)

moving with velocity (also given in equation (3))

ag

y = = 5+ \so, (A12)
T
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and smooth on a scale

2a 2u

eVt Y

Therefore, as we mentioned above, diffusion acts on a fixed
scale R. The smoothing scale R also provides an
independent way of estimating the diffusion constant v
from a static channel profile which is known to have
resulted from evolution under steady driving conditions.
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