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We measure the two-point density correlations and Voronoi cell distributions of cyclically sheared granular
spheres obtained with a fluorescence technique and compare them with random packing of frictionless spheres.
We find that the radial distribution function g�r� is captured by the Percus-Yevick equation for initial volume
fraction �=0.59. However, small but systematic deviations are observed because of the splitting of the second
peak as � is increased toward random close packing. The distribution of the Voronoi free volumes deviates
from postulated � distributions, and the orientational order metric Q6 shows local order but no long range
order. Overall, these measures show significant similarity of random packing of granular and frictionless
spheres, but some systematic differences as well.
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The packing of spheres is one of the enduring problems in
physics, and a basis to understand the structure and strength
of granular matter. Dense packing of steel spheres was first
used to investigate the structure of simple liquids with the
radial distribution function g�r� and the orientation order
metric Q6 �1�. While steel particles are frictional, this fact
was ignored in these studies because the interest there was to
primarily understand the effect of hard-core repulsion on
packing structure. However, experimental measurements at
boundaries �2� and computer simulations in the bulk �3� have
since shown that inter-particle friction can affect granular
packing. Friction between particles changes the fundamental
stability condition at contact from the frictionless case, caus-
ing a packing to be protocol dependent and the system to be
out of equilibrium.

The difficulty of accurately measuring significant number
of particle positions in the bulk away from the influence of
boundaries has also stymied progress. Recent experimental
studies �4,5� have examined packing of granular spheres and
find that the associated free-volume distributions are de-
scribed by a � distribution characterized by the average
packing fraction and a shape parameter, which were then
given a thermodynamic interpretation �5�. These results are
puzzling in light of earlier analytical work in one dimension
and simulations in two and three dimensions that show a �
distribution with three parameters are needed to describe a
broad range of volume fraction for elastic particles �6�.

Here, we discuss experiments with spherical granular par-
ticles which enable us to directly determine statistical mea-
sures to understand the effect of friction, test the effect of
shear, and perform a rigorous comparison with frictionless
hard sphere packing. Using a fluorescence technique �4,7,8�,
we obtain the packing of glass spheres before and after ap-
plication of cyclic shear, and compare with random packing
of frictionless spheres. We find that the overall shape of g�r�
for volume fraction ��0.6 is captured by the Percus-Yevick
equation �9�, which assumes random packing of spheres
without angular correlations. But, systematic deviations are
observed because of the splitting of the second peak as � is
increased toward random close packing. Using Q6, we then
show that the packings have some local hexagonal order, and

the distribution of the Voronoi free volumes shows enhanced
probabilities at higher values compared with � distributions
postulated �6� for random packing of spheres.

The experiments to measure structure of granular packing
are performed using a shear cell shown schematically in Fig.
1�a�. The parallelepiped shaped cell consists of a rigid front,
back, and bottom transparent glass boundary, and side
boundaries that can be tilted through a prescribed angle � to
cyclically shear and perturb the packing. Glass spheres with
density �g=2.5�103 kg m−3 and average diameter d
=1.034 mm with a size distribution shown in Fig. 1 are gen-
tly added inside a shear cell filled with an interstitial liquid
obtained from Cargille Laboratories with the same refractive
index as the glass spheres, density �l=1.0�103 kg m−3, and
viscosity �=2.2�10−2 Pa s. Then a flat plate is placed on
the top, which is constrained to move only in the vertical and
horizontal direction and not allowed to rotate using a rigid
set of linear guides. The initial volume fraction of the glass
beads is measured using the mass of the particles added and
the volume of the cell occupied and found to be �=0.59. A
normal stress �z=0.4 Pa is applied on the top boundary
which is about five times the net gravitational stress due to
the weight of the grains alone inside the cell, and is found to
eliminate gradients due to gravity in the system.

A dye is added to the liquid and a thin slice of the cell is
illuminated with a laser and a cylindrical lens �10�. The re-
sulting fluorescent light causes the particles to appear dark
against a bright background, and is imaged from an orthogo-
nal direction with a resolution of 20 pixels to a particle di-
ameter using a 1000�1000 pixel 10-bit camera. A stack of
images is recorded by linearly translating the plane of illu-
mination. We then examine a 40d�5d�17.5d central region
as in indicated by box in Figs. 1�b� and 1�c� to avoid any
effect of the boundaries, and locate the absolute position of
the spheres to within the slight polydispersity of the particles
�see Fig. 1�d��.

We impose quasistatic shear strain by varying � between
	
 /36 rad with a mean angular speed �=8.0
�10−3 rad s−1, with a wait time of 50 s while the stack of
images is acquired every time the system returns to its origi-
nal position, �0=0 rad. The lubrication forces �11� due to
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liquid draining at contacts can be estimated to be 10−5 lower
than the confining forces, and the particle Reynolds number
is �10−1. Therefore, the particles can be assumed to be in
contact during the entire experiment and the interstitial liquid
does not have any impact on the observed structure.

The mean packing volume fraction of the spheres inside
the entire cell is first obtained by measuring the position of
the top plate as a function of the shear cycles. The mean � is
observed to increase logarithmically from the initial value by
5% �Fig. 1�e�� consistent with previous reports with a similar
setup �12�. However, it is noteworthy that this is the total �
inside the cell and can be different than � in the bulk be-
cause of influence of boundaries �10�. Examining the images
corresponding to the initial state of the packing, before ap-
plying the shear deformation, N=1 and after shear cycle N
=600 shown in Figs. 1�b� and 1�c�, we indeed note greater
ordering near the top where the boundary shears the spheres
and moves to accommodate changes in the total �. The
boundary between ordered and disordered region appears
sharp and moves downward as N is increased further, similar
to development of crystalline order inside a Couette shear
cell upon extended shearing �7�. Therefore, we focus on the
first 600 shear cycles where the particles inside the bulk in
the observation window appear uniformly random and obtain
� from the ratio of the particle volume and the average
Voronoi volume in the bulk. The Voronoi volume is defined
by points in the volume closest to that particle, and is calcu-
lated using algorithms written by Rycroft �13� and measured
particle positions. Further, all Voronoi cells which share an
edge with the observation boundary are eliminated from the

distributions. As shown in Fig. 1�e�, the evolution of � in the
bulk is observed to be slower compared with � measured for
the entire cell and is used in all subsequent discussion.

To analyze the structure from the measured particle posi-
tions, we first discuss the radial distribution function g�r�,
which represents the probability that the center of a particle
is found at a distance r from another particle. g�r� obtained
from the experimental data is shown in Fig. 2. For the initial
volume fraction �=0.59, g�r� shows a tall peak at r�d, and
a broad peak at r�2d, but for the higher � obtained after
cyclic shear, the second peak splits. Vertical lines are also
drawn to compare the location of the peaks with r
=�2d ,�3d, corresponding to the next nearest neighbor in a
face-centered-cubic �FCC� lattice.

Now, the Percus-Yevick equation �9,14� can be used to
analytically find g�r� for randomly distributed particles for a
given particle size, and volume fraction. Because of the
slight polydispersity of the particles used in our experiments,
we in fact have to compute the Percus-Yevick pair distribu-
tion function for polydisperse spherical packings gij�r�,
where the indices i , j represent the probability of finding a
particle with diameter dj at a distance r from a particle with
diameter di.

gPY�r� =
1

n�n − 1� �i=1

j�i

n

gij�r� , �1�

here n is the number of particle sizes in the system. Coarse
graining the observed size distribution—shown in Fig.
1�d�—into three sizes d1=0.98 mm, d2=1.02 mm, and d3
=1.07 mm �using a greater n does not change the results
significantly�, we calculate the corresponding six distinct
gij�r� terms, which are plotted in the Inset to Fig. 2 for �
=0.59, and thus the computed gPY�r� for the polydisperse
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FIG. 1. �Color online� �a� Schematic diagram of the cyclic shear
cell used in the experiments. �b� An image of the initial packing
observed in the central vertical slice of the shear cell after particles
are filled inside the cell. �c� Ordering grows near the top boundary
which is free to move after 600 shear cycles but the packing in the
bulk appears random. �d� The probability distribution function of
the diameter of the glass beads. �e� The volume fraction � as a
function of shear cycle number measured in the bulk �red/gray�
evolves more slowly than in the entire cell �black� because of the
ordering near the boundaries.

φ = 0.605

φ = 0.590

FIG. 2. �Color online� The radial distribution function g�r� plot-
ted as function of distance r normalized by the mean diameter d for
initial packing �=0.59 and final packing �=0.605 obtained after
shearing, �black�, is compared with the theoretical calculation �red/
gray� obtained by using the Percus-Yevick equation, and the mea-
sured polydispersity of the beads. The �=0.605 case is offset for
clarity. Inset: The calculated pair distribution functions gij for par-
ticles coarsened to three sizes ��=0.59�. The thick red/gray curve
represents the average of the six distinct contributions gij�r� and is
used for comparison with the experimental g�r�.
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packing according to the Percus-Yevick approximation,
which is plotted in Fig. 2. We observe that the amplitude and
width of the primary peak and the broad features of the sec-
ondary peaks are in good agreement with the Percus-Yevick
approximation. This comparison is especially noteworthy be-
cause there are no fitting parameters. At higher �, the pri-
mary peak and the overall form is still captured by the
gPY�r�, but details such as the splitting of the second peak,
which can indicate ordering is not captured because Percus-
Yevick approximation assumes random angular orientation.

To investigate orientational order in the packing, we use
the orientation order metric

Ql � �
i=1

N 	 4


�2l + 1� �
m=−l

m=l


�Ylm�
�r�,��r���
2
1/2

, �2�

where, l=6 to examine hexagonal order, Ylm are the spherical
harmonics, 
�r� and ��r� are the polar and azimuthal angle,
respectively, and r is the position vector from a particle to its
neighbor �15�. We define particle neighbors as those which
share a Voronoi cell surface �13�. This removes any ambigu-
ity as is introduced when considering only neighbors at con-
tact due to round off errors in finding a particle center. In
order to compare with packing of elastic particles, we first
compute Q6,global by averaging Ylm�
�r� ,��r�� over all the
bonds of the packing. Q6 for a FCC crystal with 12 neighbors
is 0.5745. But even a slight perturbation due to round off
errors introduces 2 extra neighbors and the corresponding Q6
is on average 0.454 �16�. We find Q6,global to be less than 2
�10−2 over the entire range of � investigated. If particles
neighbors are uncorrelated �17�, then Q6 is small because it
goes as inverse square root of the total number of bonds �18�,
which is of order 10−2 given the few thousand particles in the
region of interest. Therefore, the observed packings show no
global ordering which is similar to results obtained with nu-
merical simulation with large number of particles �19�. How-
ever, we note that such a global measure is not illustrative if
there is local order.

Therefore, to examine the local orientational order more
closely, we plot the observed probability distribution of Q6
for each particle in Fig. 3�a�, and the mean of the distribution
�Q6,local� in Fig. 3�b�. �Q6,local� is more sensitive than Q6,global
to small crystalline regions within a packing and allows us to
avoid the possibility of destructive interference between dif-
ferent crystalline regions �20�. No significant enhancement
of distribution is found at the values corresponding to FCC
crystal, and the observed Q6 distribution can be described
rather well in fact by Gaussian fits. Because Q6,global shown
in Fig. 3�b� is somewhat greater than Q6,local�1 /�14�0.27
expected on average for 14 Voronoi neighbors observed in
our experiments, we conclude that some local hexagonal or-
der is observed. However, even small FCC crystal regions
are absent because prominent peaks are not observed in g�r�
at �2d and �3d.

A complementary method to examine the packing at the
particle scale is using the free volume v f associated with
each particle given by subtracting the minimum Voronoi vol-
ume corresponding to close packing, vc=d3 /�2 from the
Voronoi volume. This measure is sensitive to particle level

packing and relative orientation of neighboring particles.
Further, this statistical quantity has also gained prominence
because it may be used to define a new measure of entropy
based on disorder in packing �6,21�, and may be amenable to
thermodynamic interpretation �5�. It has been postulated
based on analytical work in one-dimensional systems, that v f
distribution of random packing of spheres can be described
by a � distribution �6�:

f�v f� =
���m/�2�

��m/�2�
v f

�m/�−1�e−�vf
�
, �3�

with three fitting parameters m, �, and � that control differ-
ent parts of the distribution and were determined by numeri-
cal simulations with frictionless hard spheres �6�. In Fig. 4,
we plot v f normalized by the mean free volume �v f� at that �
along with the distribution obtained at various �. The errors
associated with the slightly polydispersity and errors in find-
ing particle centers are of order of symbol size. Further, we
plot Eq. �3� using m=15.56, �=9.94, and �=1.3 reported in
Ref. �6�. Systematic deviations are clearly observed from the
frictionless case. It is possible that friction between particles
leads to more incidences of arches and empty spaces in the
packings because fewer contacts are necessary to keep a par-
ticle with friction stable. Combined with the fact that local
hexagonal order is also present as measured by Q6 may lead
to overall deviations from random packing of spheres.

In order to check if a �-distribution can capture the ex-
perimentally observed free volume distributions, we tested

(a)

(b)

FIG. 3. �Color online� �a� The probability distribution of Q6

measured for each particle using Voronoi neighbors are observed to
describe by Gaussian fits. �b� The mean Q6,local measured as a func-
tion of �. The curve is a guide to the eye and shows that Q6

increase somewhat over the narrow � investigated.
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both the three parameter distribution, and the two parameter
distribution which corresponds to setting �=1 in Eq. �3�. The
best fit obtained with m=12.3, �=24.5, and �=0.73 is also
shown in Fig. 4. Even in this case we obtain enhanced prob-
abilities for v f greater than the mean. For completeness, we

show the two parameter � fits with m=�=10.44 along with
m=�=15.56 for frictionless case in the Inset to Fig. 3. Clear
deviations can be seen not just in the tail but in the overall
shape as well. Therefore, our distribution differ from the ex-
perimental distributions used to give a simple thermody-
namic interpretation of granular packing �5�. While it is pos-
sible that such deviations arise because of the differences in
preparation protocol, we note no significant differences in
the distributions obtained before and after application of
cyclic shear in our experiments.

In conclusion, we measured packing of granular spheres
and compared experimentally obtained two-point density
correlations and free-volume distributions before and after
application of shear. We find that the radial distribution func-
tion is captured overall by the Percus-Yevick equation, which
is important because it is fundamental to calculating the
strength, heat conduction, and electromagnetic wave scatter-
ing properties of a material. While angular correlation are
absent at a global level, some local hexagonal order can be
observed using the orientational order metric. Further, we
find that particle free-volume distributions deviate systemati-
cally from random distributions of frictionless hard sphere
because of possible arching effects introduced by friction.
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FIG. 4. �Color online� The probability distribution function of
the free volume associated with a sphere v f normalized by the mean
free volume �v f� plotted for various �. The symbols correspond to
� shown in Fig. 3�a�. The three parameter � function given by Eq.
�3� corresponding to elastic frictionless spheres is shown for com-
parison, and is observed to deviate systematically at higher v f. Al-
lowing the fitting parameters to float improves the fit, but system-
atic differences persist for v f � �v f� �blue dashed curve�. Inset:
Comparison of data with two parameter � function obtained by
setting �=1 in Eq. �3�.
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