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Epitaxial growth of ordered and disordered granular sphere packings
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We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings
by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can
be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a
gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction
and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container
side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the
deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing
is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate
at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their
local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the
form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in
order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the
layer above with a probability that increases with the deposition flux.
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Granular materials when poured into a container in a
gravitational field quickly dissipate away their kinetic energy
and come to rest because of inelastic collisions and friction
between grains. Even in the case of monodisperse spherical
particles, the resulting packings are disordered [1,2] with
a packing fraction that has been shown with numerical
simulations [3] to depend on the grain-grain friction. Reducing
the kinetic energy of the particles being deposited is thought
to result in looser packings [4,5]. If the container is vibrated or
tapped, such packings only approach a random close packing
fraction of approximately 0.64 [2], well below the maximum
sphere packing fraction ¢,y of V2 /6 = 0.74 corresponding
to an ordered structure.

Meanwhile, templating and epitaxy has been used to grow
ordered atomic thin films [6,7] and colloidal crystals with
a single phase [8,9]. The development of order and defects
can vary in principle depending on the flux and temperature,
which determine the degree of thermalization in the surface
layer as the particles come to rest [10]. In the case of granular
matter that is athermal, it has been shown that packings with
random hexagonal-close-packed (rhcp) or fcc symmetry can
be observed if the container is vibrated horizontally while
spheres are slowly poured [11,12]. However, a large number
of defects could also be observed, making it unclear if it is
possible to make fully ordered granular packings without direct
manipulation.

Here, we demonstrate that a defect-free monocrystal can
be obtained by simply adding monodisperse particles at
random onto a templated substrate, provided the deposition
rate and energy are sufficiently small, and in fact vibrations
are unnecessary. The key idea is that the deposited spheres
come to rest one at a time, which allows them to fall to the
potential minimum before being obstructed by other spheres.
We obtain internal scans of the packing with micro x-ray
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computed tomography, and we show how cooperative locking
of spheres above their local minima leads to defects at the con-
tainer boundary when the deposition energy is increased. We
characterize the orientational order using statistical measures
corresponding to each sphere, and we show that fcc is the only
ordered phase.

In our experiments, the template corresponds to gravita-
tional potential wells created in a square grid with spheres in
contact corresponding to the (100) plane of a fcc crystal. We
choose this template because it can give rise in principle to
a monocrystal (whereas a hexagonal template gives rise to a
rhep structure due to the degeneracy of the A and C planes of
a hcp structure with respect to its B plane). With the spheres
thus arranged in a square lattice, a sphere placed on this layer
will have the highest gravitational potential energy at points
precisely above the center of the spheres in the layer below, and
minimum potential energy directly above where the diagonals
joining lattice points in the layer below meet. The potential
energy difference AU for a unit mass gives a relevant energy
scale for the kinetic energy of the spheres being deposited, and
is given by AU = (1 — +/2/3)gd, where g is the gravitational
acceleration and d is the sphere diameter. Granular spheres,
when deposited, bounce a few times before completely losing
kinetic energy, unlike atoms and colloids which are thermally
activated. Spheres that are being deposited with sufficiently
large energies can also dislodge and damage the substrate.
A priori it is difficult to predict if such defects heal when
additional spheres are added or lead to further defects.

Our experiments are performed using 5698 plastic spheres
with diameter d = 5.90 £ 0.04 mm in a laser-cut acrylic
container with a 15d x 15d square inner cross section. The
plastic beads have a coefficient of restitution e = 0.82 £+ 0.2
and sliding friction u; = 0.33 % 0.03. A square lattice of holes
with diameter d;, = 1.8 mm with a spacing d is drilled into the
bottom surface of the container such that spheres placed in the
holes correspond to the (100) plane of a fcc packing. Once the
template is constructed, we deposit the spheres by hand from
a height & above the top layer with a random position in the
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FIG. 1. (Color online) (a) A fully ordered fcc packing observed
by dropping spheres for sufficiently low deposition flux I' =11,
which is normalized by the template potential well energy. A
transition to disordered packings is observed as the deposition flux is
increasedto I’ = 16 (b), ' =22 (c),I' = 109 (d), and I" = 1090 (e).
(f) Example of a disordered packing observed when all the spheres
are dropped from a height of the container where I' = 3.6 x 10°. The
spheres are rendered using their measured positions with ordered
[orange (light gray)] and disordered (gray) phase denoted by using
QOé.1ocal a8 a criterion.

horizontal plane. Thus a scaled deposition flux is given by the
total deposition energy E scaled by the depth of the potential
well AU,ie.,.I' = E/AU = %, where n is the number
of spheres dropped simultaneously. In the experiments we
discuss in the following, n = 1, 2, 10, 100, and 5698.

After each packing is prepared, it is scanned with a Varian
Medical Systems microfocus x-ray computed tomography
instrument. The position of the spheres is measured to within
the sphericity of the particle diameters using the centroid of the
voxels corresponding to each sphere. The total packing fraction
¢ is then calculated by using the average of the highest layer of
spheres in the container. Further, we also use Voro++ [13] to
obtain the Voronoi cells corresponding to the volume closest
to each particle in the packing. This allows us to identify
nearest neighbors that share a face of their Voronoi cells as
well as those that neighbor the boundaries of the container.
By considering Voronoi cells that do not share a face with a
boundary, we also obtain the volume fraction in the bulk of the
packing @puik-

A sample set of packings obtained as a function of
increasing deposition flux is shown in Figs. 1(a)-1(f). Here the
packings are rendered using the measured sphere positions and
are further marked according to whether they are considered
ordered or disordered, using the local orientational order
parameter Qg jocal aS a criterion (see Appendix). To investigate
the internal structure of the packings, we plot the number
density of the spheres p averaged over 0.3d thick horizontal
transects as a function of distance z from the substrate in
Figs. 2(a)- 2(f). This averaging distance was chosen to be
smaller than the plane-plane distance in a fcc/hep so that the
contribution due to each plane can be resolved. The packings
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obtained by dropping spheres one at a time from a height
h ~ 2d and random horizontal positions are shown in Fig. 1(a).
In this case, the granular spheres being deposited collide
with those that form the substrate, then roll and slide down
the potential well before coming to rest at the bottom. Even
though I = 11, the deposited spheres do not appear to move
or damage the substrate layer. The density plot in Fig. 2(a)
corresponding to the ordered packing shows clear periodic
oscillations with narrow peaks that alternate with two different
amplitudes. These amplitudes are consistent with the growth of
a fcc packing with 225 and 196 spheres in alternate horizontal
planes corresponding to the dimensions of the container.

It may also be noted that the total volume fraction ¢ is
measured to be 0.68 by using the height of the top layer of
beads and the lateral dimensions of the container, which is
lower than ¢..,x. However, this difference arises because of
the side walls of the container, which prevent placement of
spheres in partially filled sites. Thus, when we calculate the
volume fraction ¢y, using Voronoi cells that do not share a
face with the packing boundary, we find ¢y, = 0.73, which
is within experimental error of ¢yax.

As the normalized deposition flux ' is increased, the
packing can be observed to transition from an ordered to
a disordered phase. This is demonstrated by considering
the packing obtained by dropping spheres sequentially from
h = 3d inFig. 1(b) with ¢, = 0.67, by dropping two spheres
atatime from aheight of 7 ~ 2d in Fig. 1(c) with ¢, x = 0.65,
and by dropping 10 and 100 spheres at a time from a height
of h ~ 2d in Figs. 1(d) and 1(e) with ¢pux = 0.64. Further,
a packing obtained by pouring all the spheres rapidly from
the top of the container is shown in Fig. 1(f). This last case
is similar to how granular packings are typically prepared,
and the resulting ¢pux = 0.60 is similar to those previously
reported with glass spheres [14].

From Figs. 1(b)- 1(d), we observe that the packing is
initially ordered and becomes disordered with height as
indicated also quantitatively by the decrease in amplitude
of oscillation of p(z) in Figs. 2(b)— 2(d). The decay of
layering occurs increasing rapidly as I" is increased, and in
the case of the highest I' it decays exponentially away from
the boundary, similar to previous studies of packing near
boundaries using the particle-interstitial liquid refractive index
matching technique [15]. One can further note that while the
amplitude of p oscillations decreases, the height of the packing
grows higher. This is consistent with the fact that disordered
packings have lower packing fractions compared with @ .

To examine the nature of the packing at the level of an
individual sphere, we plot Qujocar Versus Qg ocar for each
individual sphere in Fig. 3 for the six different packings. In
Fig. 3(a), the points are closely clustered around the values
corresponding to a finite-sized fcc crystal (see Appendix).
The probability distribution function (PDF) of the Qg ocal
plotted in the inset shows a narrow peak corresponding
to the bulk value for a fcc crystal, whereas in Fig. 3(f),
the points appear scattered over a broad range of values.
Examining the corresponding inset, one notes that the sharp
peak corresponding to the bulk value of Qg oca is absent
and, instead, a broader distribution that can be fitted by a
Gaussian is observed. Such a distribution has been shown
to be consistent with a packing with uncorrelated angular

032203-2



EPITAXTIAL GROWTH OF ORDERED AND DISORDERED ... PHYSICAL REVIEW E 90, 032203 (2014)

2 -2 -2
2x10 T 2x10 =g 2x10 =55
1x107} 1x107} 1x107}
N N N
Q aQ Q
5x10° 5x10° 5x10°
(@) (b) (©)
0 . . . 0 . . . 0 . . .
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
z/d z/d z/d
-2 -2 -2
2x10 ——T 2x10 —— 7050 2x10 ———y T
1x107F 1x107} 1x107}
N N N
[oN Q [oN
5x10°t 5x10°+ 5x10°+
0 (d 0 © 0 (®
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
z/d z/d z/d

FIG. 2. (a)—(f) The density profile p(z) as a function of height z corresponding to packings shown in Figs. 1(a)- 1(f).

distribution of neighbors [16]. The plots of Q4 jocal Versus an order-to-disorder transition show a scatter of points similar
Os¢.10cal [see Figs. 3(b)— 3(e)] corresponding to packings with to the random case as well as values clustered around the
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FIG. 3. (Color online) (a)—(f) The scatter plot of Qujocat VS Qs 1oca cOrresponding to packings shown in Figs. 1(a)- 1(f). Each point
corresponds to a particular sphere in the packings. The expected values for a fcc monocrystal of the size of the container is indicated by a red
+. Insets: the corresponding probability distribution function (PDF) of Qg jocal- (2) A sharp peak is observed corresponding to the theoretical
Q6 1ocal in the bulk of a fcc monocrystal, and a much smaller peak due the ones next to the boundaries. As the deposition flux I' is increased,
the fcc peak is observed to decrease in value, and a broader distribution is observed that is fitted by a Gaussian [dashed red (gray) line] with
mean 0.45 (b), 0.43 (c), 0.42 (d), and 0.43 (e). (f) The fcc peak is observed to be completely absent and the distribution is fitted by a Gaussian
with mean 0.37.
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fce crystal. Examining the PDFs, one can note that the sharp
fcc peaks decrease in amplitude and broaden. Further, a
second peak that can be well fitted to Gaussian distribution
is observed. The means obtained by fitting these distributions
are slightly shifted compared to the distributions observed
in the case of the packing, which are fully disordered. We
assume that this occurs because of the presence of partial
ordering when calculating Qg jocal for spheres on the boundary
between ordered and disordered regions. Furthermore, it can be
noted that no other peaks corresponding to other symmetries
(such as hexagonal close packing) are observed. This is in
contrast with partially ordered packings obtained by applying
shear, in which a mixture of fcc and hcp phases is observed at
comparable volume fraction [14]. Thus, the packings obtained
by epitaxial growth contain only domains of spheres with
fcc order, random order, and partial order corresponding
to the interface between the fcc ordered and disordered
regions.

In the case of spheres, defects can arise in multiple ways.
In addition to the locus of maxima and minima which are
arranged in a square lattice [which are denoted by crosses
and circles, respectively, in Fig. 4(a)], the center of the line
joining lattice points correspond to saddle points. Because
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FIG. 4. (Color online) (a) Top view of the (100) plane of a fcc
crystal with open blue (dark gray) circles and orange (light gray)
cross symbols denoting the lattice sites in consecutive planes. The
sites linked by dashed blue (dark gray) lines correspond to layer A
and solid orange (light gray) lines to layer B, respectively. A defect
leading to one of the spheres being slightly off its potential minima
and away from the side wall is shown as well. In this case, the two
points indicated by the solid orange (light gray) circles form small
minima in which spheres can lodge, leading to defects, which in
turn can exclude spheres from lodging into sites indicated by arrows.
(b) Examples of defects that can arise because of imperfections in the
template are indicated by circles with dashed-line style. A wide range
of incipient arches can be supported with granular spheres because
of the presence of friction.
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granular particles have friction, a small area ~u?d? around
the maxima and saddle points is in fact stable, where p is the
coefficient of rolling friction between the spheres. If a sphere
has sufficient initial energy to overcome the friction, then it will
move to a neighboring local minimum before coming to rest.
Because 1 &~ 10~ in the case of the plastic spheres used in
our experiments, this area of stability is in fact small and thus
the probability for the formation of such individual defects
appears to be small. However, as the energy of the spheres
being deposited is increased with I', they can cause the spheres
in the substrate to move and even dislodge completely. In this
case, it becomes more probable that the spheres collectively
come to rest slightly above their local minimum because of
frictional frustration at contacts. If a sphere in the substrate is
not precisely touching the side wall of the cell, then the saddle
point corresponding to that sphere and its neighbor and the
side wall becomes a shallow minimum (see Fig. 4). Thus, a
sphere can get lodged in that minimum giving rise to a defect.
This minimum can in turn give rise to further defects in its
neighborhood, as it can prevent spheres from falling into its
lattice location, as indicated in Fig. 4(b). Such defects are
difficult to heal and lead to the growth of disorder in the layer
above.

Figure 5 shows the number of ordered spheres as a
function of height for various I". The corresponding layer-
by-layer identification of the ordered and disordered spheres
is presented as movies in the Supplemental Material [17]. For
example, in the case of I' = 16, it can be seen that a defect
in the fcc lattice appears in the fourth layer, and the number
of particles in a disordered state starts to increase with layer
number. It is apparent that the defects nucleate more or less all
at the boundaries, and these defects lead to growth of further
disorder with layer number.

To understand the observed form of the number of ordered
spheres as a function of height, we consider a minimal

250 T T T T T T T T
A T=16
o I'=22
200 - o T=109 ]
T =1090
Model, T =16
150+ Model, T =22 -
| Model, T =109
8 Model, T = 1090
Z. 100+ -
50t -
Ok L =

z/d

FIG. 5. (Color online) The number of ordered spheres as a
function of height z is observed to decrease, increasing faster as
the deposition flux is increased. The small layer-to-layer oscillation
in each curve arises because the total number of fcc ordered spheres is
different because of the finite size of the container. The overall trends
are captured by a minimal model in which defects are nucleated at
the boundaries, or by the presence of a defect in the layer below with
a probability that increases with I" (see text).
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model of decay of order in a fcc lattice according to the
following assumptions. Defects are assumed to nucleate only
at the boundaries with a small probability, which depends
on I'. The presence of a defect is then assumed to lead
to a defect in the nearest-neighbor site in the layer above
with a significant probability that also depends on I'. We
implement the consequence of such a model by defining a
three-dimensional (3D) matrix consisting of 28 alternating
(15 x 15) and (14 x 14) matrices corresponding to each layer
of the fcc lattice in which the elements are initialized to 1. Then,
the elements at the boundary starting with the second layer
are set at random to O with a probability corresponding to a
probability P, to find a nucleation site in the experiments. (The
first layer is the template and thus has no defects.) Next, the
matrix elements are considered layer by layer from the bottom
up. If a matrix element corresponding to a defect is found, then
itis assumed to lead to a defect in the nearest-neighboring site
in the layer above with a probability P, also measured from
the experimental data corresponding to that particular I". In
this case, that element is set to 0 as well. It may be noted
readily from Fig. 4(b) that these nearest-neighboring sites are
at a distance d and equal four in the bulk, and they can be
as few as two at the boundaries. Iterating the consequence of
this rule layer by layer, we now have a matrix with lattice
points set to 1 corresponding to an ordered sphere, and those
corresponding to defects as 0. We then obtain the decay of
ordered sites by summing the elements layer by layer as a
function of height. We simulate 100 such packings with defect
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sites selected randomly and then obtain an average decay of
order for each IT".

The results of the minimal model are shown in Fig. 5,
where P, = 0.005, 0.022, 0.034, and 0.049 and P, = 0.65,
0.80, 1.0, and 1.0 for I" = 16, 22, 109, and 1090, respectively.
Because, we have only one experimental packing per T, it
is difficult to interpret the values P, and P, except to note
that P, are small and P, are large and increase with I'.
Nonetheless, one can clearly observe that the overall rapid
decay of order is captured by the minimal model. This gives
a simple mechanism by which order decays in the packing,
and it shows that the disordered domains grow as inverted
cones with the apex located near the side boundaries where
the defects first nucleate. This picture is further confirmed
from the profile view of packing in Figs. 1(b) and I(c),
where one can also observe that these disordered domains
merge at large enough height to form a single disordered
domain. The fact that defects nucleate at the boundaries in
these examples implies that ordered layers can be easily
obtained by using templates that are wider for even higher flux
rates.

In conclusion, we have demonstrated that a fully ordered
single crystal can be obtained by using the (100) plane of
a fcc crystal as a template and by depositing monodisperse
granular spheres with sufficiently low deposition rate and
energy. Disorder is observed to nucleate at the boundaries
due to cooperative locking of spheres in out-of-equilibrium
positions. Thus, our experiments show that a fully ordered

40 — 40 v 40
@ | - (b) r- © oz
30} 30 30}
— 20} ' o 20F = 207
) ) &
%h 50 oh
1ok 10+ 10+
0 ‘ 0 i ; 0 i . x -
0 1 0 1 3 4 5 0 1 2 3 4 5
r/d r/d
40 40 40 -
) : ——T =109 ©) —— T =1090 0 ——T=36x10
0 304 301
= 20 =200
= & !
10} 10r L
hobii
0 0 /1 h I
0 0 1 2 3 4 5
d /d r/d

FIG. 6. (Color online) (a)—(f) The density-density radial correlation function for the six packings shown in Fig. 1, which span the fully
ordered to random packings. The experimental data are compared and contrasted with the g(r) obtained for a fcc packed crystal that fits in
the container used in the experiments [the red (gray) dotted line]. The location of the peaks and the relative amplitude is observed to compare
well in the case of the ordered packing. The peaks in the experiments are systematically lower and broader to the polydispersity and error in

locating the center of the grains.
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or disordered packing can be obtained by simply varying the
deposition flux and the template.
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APPENDIX: LOCAL ORIENTATIONAL
ORDER PARAMETER

We use the orientation order metric to investigate orienta-
tional order in the packing. It is defined as

N A m=l 1/2
Qltoca = ( TR m; (Y (O@), 2> ] (A1)

i=l1

where ! = 4,6, Y}, are the spherical harmonics, ®(r) and ®(r)
are the polar and azimuthal angle, respectively, and r is the
position vector from a particle to its neighbor [18]. We define
particle neighbors using the density-density radial correlation
function g(r) as a function of distance r, and which is plotted
in Fig. 6 for the six sample packings discussed. We consider
all particles that fall below the first minimum observed beyond
the peak. This definition removes the errors introduced when
considering only neighbors in contact due to errors in finding
the center of the spheres in the experiments.

To compare the packings observed in the experiments with
an ideal fcc crystal with the same dimensions as the experi-
mental container, we generate the positions corresponding to
such a packing. We then compute the coordination number Z
(the number of nearest neighbors), the local packing volume
fraction, ¢yoca, and the local bond orientational parameter,
O6.10cal- These results are shown in Fig. 7. For an ideal infinite
fcc lattice, in which each particle has 12 nearest neighbors,
Q¢ = 0.5745 and the packing density is ¢ = 0.74 as in
Fig. 7(a). The spheres situated on the surface layers of the
crystal have fewer than 12 nearest neighbors, and consequently
deviation from the expected value of Q° and ¢ can be
observed in those cases. Therefore, Qg joca and Poca for the
particles at the boundary with fewer neighbors compared to
those in the bulk are noted in Figs. 7(b)— 7(h).
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O = 0.52 O =0.52 O, = 0.44 §e =048

FIG. 7. (Color online) A computer-generated face-centered-
cubic monocrystal: The particles are divided into eight categories
based on their coordination number, Z, and the local packing volume
fraction, @joca1, and bond orientational parameter, Qg jocal» are reported
for each category. N is the number of particles with the same Z.
(a) The bulk particles have Z = 12 and @ioca = 0™, Os.10cal = OK°.
(b)-(h) The spheres on the crystal surface have fewer than 12 nearest
neighbors, and consequently deviation from the expected value of
O and ¢ can be observed in their case.

It can be noted that the local volume fraction decreases
systematically when the coordination number decreases. How-
ever, the local bond order parameter (g joca do€s not change
monotonically with coordination number. This is because the
values of (g jocal are determined not only by the relative
positions of the neighbors but also by the number of nearest
neighbors. Including the spheres at the boundaries also has a
significant effect on the total volume fraction ¢ of the packing
of this sample size. If one adds the ¢,y contributions due to
particles with Z = 11 and 10, as in Figs. 7(b) and 7(c), to those
with Z = 12, the total packing fraction ¢ decreases to 0.73.
Adding the contributions of all the particles in the packing
yields ¢ = 0.68.
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