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We investigate with experiments the twist induced transverse buckling instabilities of an elastic
sheet of length L, width W , and thickness t, that is clamped at two opposite ends while held under a
tension T . Above a critical tension Tλ and critical twist angle ηtr, we find that the sheet buckles with
a mode number n ≥ 1 transverse to the axis of twist. Three distinct buckling regimes characterized
as clamp-dominated, bendable, and stiff are identified, by introducing a bendability length LB and
a clamp length LC(< LB). In the stiff regime (L > LB), we find that mode n = 1 develops above

ηtr ≡ ηS ∼ (t/W )T−1/2, independent of L. In the bendable regime LC < L < LB , n = 1 as well as

n > 1 occur above ηtr ≡ ηB ∼
√
t/LT−1/4. Here, we find the wavelength λB ∼

√
LtT−1/4, when

n > 1. These scalings agree with those derived from a covariant form of the Föppl-von Kármán
equations, however, we find that the n = 1 mode also occurs over a surprisingly large range of L in
the bendable regime. Finally, in the clamp-dominated regime (L < Lc), we find that ηtr is higher
compared to ηB due to additional stiffening induced by the clamped boundary conditions.

I. INTRODUCTION

Twisting, along with stretching and bending, is a fun-
damental loading that can be applied to an elastic object.
Since the seminal work of Coulomb and Saint-Venant
on the elastic equilibrium of prismatic bars [1, 2], the
response of slender structures under torsion has played
a pivotal role in the development of the theory of elas-
ticity [3, 4]. More recently, a large number of studies
have focused on complex equilibrium shapes arising upon
twisting rods with circular or rectangular crossections
due to strong geometrical nonlinearities [5–9]. We fo-
cus here on elastic structures such as sheets and ribbons
where the thickness is much smaller than the width. In
this limit, the classical Kirchhoff theory is ill-suited to
model such strongly anisotropic structures and do not
accurately predict their torsional stiffness and morpho-
logical response [10, 11]. Because flexural modes are far
less costly energetically than in-plane deformations, thin
sheets can undergo buckling instability to accommodate
compressive stress [12].

While constrained buckling instabilities of elastic rods
and sheets in planar configurations have gathered sig-
nificant attention [13–19], the rich set of buckling and
wrinkling patterns observed in elastic sheets upon twist
is only being appreciated more recently [20, 21]. Be-
low a critical dimensionless tension Tλ applied along the
longitudinal direction, it is well known that a twisted
sheet in the form of a ribbon wrinkles due to the devel-
opment of compression at the center of the ribbon for suf-
ficient twist [22, 23]. Twisting above threshold, the wrin-
kling region is found to widen until reaching the edge of
the ribbon consistent with predictions from a recent far-
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from-threshold theory for ultra-thin sheets [18, 24]. Fur-
ther, the wrinkling pattern exhibits a symmetry break-
ing along with a continuous localization of the elastic
energy leading to the formation of a triangularly faceted
helicoid [25]. The resulting structure called e-helicoid
is obtained experimentally under small finite tension as
opposed to the developable faceted helicoid which is ob-
tained theoretically for inextensible sheets [26]. However,
above Tλ, the ribbon is observed to buckle or wrinkle only
in the transverse direction depending on ribbon thickness
and length [20, 21, 27]. While the Föppl-von Kármán
(FvK) equations commonly used for thin sheets do not
give rise to development of destabilizing compression in
the transverse direction with twist, an additional term
arising from finite rotation effects was identified and in-
cluded in the instability mechanism [21]. This addition
enabled us to capture the thickness dependence of the
observed critical twist.

Subsequently, Chopin, Demery, and Davidovitch [24]
proposed a covariant extension of the Föppl-von Kármán
(cFvK) equations which offers a rigorous theoretical
framework to address equilibrium shape of ribbons which
significantly depart from a planar base state. They de-
rived the analytical expression of the transverse and lon-
gitudinal stresses, solving perturbatively the cFvK equa-
tions using a small slope and small tension limit, and
suggested the existence of various transverse instabilities
depending on the normalized length L/W and thickness
t/W , the normalized tension T , and the applied bound-
ary conditions.

For a fixed tension Tλ � T � 1, their model predicts
two distinct instabilities of helicoid base state, which was
analyzed in depth. They further conjectured a third in-
stability for short ribbons where the base state is dom-
inated by the clamp boundary condition. Previously in
Ref. [21], we showed that the shape of a twisted and
stretched ribbon is a helicoid with zero mean curvature
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and constant negative Gaussian curvature except near
the edges. In this region, the clamp boundary condition
(a) is not compatible with the helicoid geometry, and (b)
inhibits lateral displacement. Thus, significant shear and
transverse stresses are induced on the sheet. Based on
energy comparisons between clamped sheet and helicoid
ribbon, Chopin, Demery, and Davidovitch [24] also ar-
gued that the extent of the deviations from helicoid is
given by a clamp length LC which scales as:

LC = ν(W 2/t)T 3/2. (1)

Thus, for L > LC , a twisted sheet is expected to exhibit
a helicoid base state. However, the precise distribution
of stress inside the clamp-dominated zone is as yet not
known.

At the other extreme, in the ribbon limit (L/W � 1),
much more is known about the distribution of stress in
the helicoid base state [21, 24]. With respect to stabil-
ity against buckling, two factors come into play. One is
related to a tension-induced stiffness penalizing unstable
modes with large amplitudes, and the other to a bending
resistance which penalizes modes with large curvature.
The tension-induced stiffness is analogous to that found
in self-supported stretched sheets, and in thin films sup-
ported on elastic substrates [13]. It is noteworthy that
in the case of self-supported sheets, the tension-induced
stiffness is not a mechanical constant but rather origi-
nates from nonlinear geometrical effects that dominate
for large deflections [13, 14, 18, 24].. In particular, the
tension-induced stiffness increases with the applied ten-
sion and decreases with sheet dimensions. Furthermore,
tension-induced stiffness in twisted sheets is negligible
compared to bending resistance when the tension is be-
low a characteristic tension TC = (L2t2)/W 4 [24].

Instead of tension, we find it more convenient here to
introduce a new characteristic length scale, called the
bendability length scale:

LB = (W 2/t)
√
T . (2)

Thus, when L� LB , tension-induced stiffness can be ne-
glected. The bendability length is closely related to the
more general concept of bendability number which has
proven to be useful to address wrinkling instability in uni-
axially stretched sheets [18]. There, a high bendability
number corresponds to a very thin sheet with negligible
bending resistance compared to tension-induced stiffness.

Thus, the various possible regimes originally organized
by Chopin, Demery, and Davidovitch [24] in terms of
tension T can be recast in terms of L, LB , and LC as
follows.

(a) For very long lengths (L � LB) or infinite length
limit, the sheet buckles in the fundamental mode with a
wavelength λ ∼ W when twisted above a critical twist
angle which is L-independent. The transverse compres-
sion is balanced by the bending resistance alone, and that
tension-induced stiffness can be considered to be negligi-
ble.

(b)
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FIG. 1. (a) An image of wrinkled sheet which is clamped at
its ends and twisted about its axis. (PolyVinyl sheet with
W = 30 mm and t = 230µm.) The intersection of a planar
laser sheet with the wrinkled sheet is used to obtain the de-
flection of the ribbon surface. (b) A 3D reconstruction of a
wrinkled sheet obtained by sweeping the laser sheet (θ = 90◦,
T = 0.1, L/W = 3, t/W = 0.0025). (c) Image of a twisted rib-
bon in the stairwell of the Math-Physics Building (L = 16 m).
(d) Observed number of modes decreases to one as the sheet
length to width ratio is increased. Examples of observed tran-
sects at various L/W are also shown (t/W = 3×10−3). (Latex
sheet with W = 50 mm and t = 152µm.)

(b) For intermediate lengths (LC � L � LB) or long
but finite lengths, they calculated that the sheet buck-
les into higher modes (or wrinkles) with a wavelength
which is smaller than W at a critical twist angle which
decreases with tension and the length to thickness aspect
ratio. For these lengths, the transverse compression has
to overcome not only bending resistance but a tension-
induced stiffness as well.

(c) For short lengths (L� LC) where length and width
of the sheets are comparable, the clamps can be impor-
tant because the clamped boundary condition induces
stretching which causes considerable deviations of the
stress from that for a helicoidal base state. However,
no predictions were available of this effect on the critical
angle and wavelength.
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Material E (MPa) ν L (m) W (mm) t (µm)

PolyVinyl 1.2 0.38 0.05 - 0.2 30, 50 230, 500

Latex 3.2 0.50 0.08 - 2.0 50, 80 152, 500

PET 5700 0.37 0.10 - 16.0 0.38, 12.7 10, 18

TABLE I. List of various materials used in the experiments
and their properties.

In this paper, we discuss the transverse buckling in-
stability in thin elastic sheets by measuring the criti-
cal instability angle and characterizing the wavelength
of the buckling mode with twist over a wide range of
sheet length, width, and thickness. We find that the
observed instabilities are consistent with the overall be-
havior proposed, with the critical twist angle dependent
on the aspect ratios and the tension. However, some dif-
ferences were also found. From our experiments, we iden-
tify three distinct transverse instabilities corresponding
to three regimes with increasing sheet length while hold-
ing width constant. Namely, a clamp-dominated regime,
a bendable regime, and a stiff regime.

The clamp-dominated regime is typically reached for
short sheet L . LC . We demonstrate that the sheet
destabilizes into higher buckling modes at relatively
higher twist and shorter wavelength. We argue that the
clamped boundary conditions at the ends inhibits out-
of-plane deflection leading to a delayed buckling insta-
bility. In the bendable regime reached for intermediate
length LC . L . LB , fundamental and higher-order
buckling modes are observed above a L-dependent criti-
cal twist angle which scales as ηB ∼

√
t/LT−1/4. When

higher-order buckling develops, we find the wavelength
λB ∼

√
tLT−1/4. These scalings are consistent with the-

oretical predictions derived in the bendable regime [24].
However, quite surprisingly, we find in the bendable
regime that the sheet destabilizes into the fundamental
buckling mode over a significant range of length to width
aspect ratio. In this case, the wavelength trivially scales
as λtr ∼ W , a feature that was not predicted by the
theory. Finally, the stiff regime is identified by going to
extreme lengths. The sheet is found to destabilize into
the fundamental mode above a critical twist that scales as
ηS ∼ t/WT−1/2 in full agreement with predictions in the
long length limit. Thus, we find that the crossover length
LB between the bendable regime and the stiff regime
is captured by the transition from length-dependent to
length-independent critical twist, but not by the wave-
length transition from higher modes to the fundamen-
tal buckling mode. We find that the crossover length
between the L-dependent to the L-independent critical
twist is well captured by LB but the transition from
higher modes to fundamental modes as L is increased
is significantly overestimated.

II. EXPERIMENTAL SYSTEM

An image of a wrinkled sheet along with a 3D render-
ing and the coordinate system is shown in Fig. 1(a, b),
respectively. The experiments were performed in the lab-
oratory for lengths less than L = 2 m, about the height
of the lab. The stairwell in the physics department was
used for longer lengths as shown in Fig. 1(c). As in our
previous study [21], the ribbon is held under clamped
boundary conditions at two opposite sides and twisted
about its symmetry axis. The sheet is twisted by an
angle θ about the x-axis while being pulled at the two
clamped ends with a constant force F which is applied
along the x-axis with the help of linear guides. The ma-
terials used and their properties are listed in Table I.
Then, the nondimensional tension T = F/(EtW ), where
E is the Young’s modulus, and the normalized twist angle
η = θ(W/L). In the experiments discussed in the follow-
ing, we apply a tension T > Tλ, corresponding to the
tension below which compressive stresses develop in the
longitudinal direction that can give rise to longitudinal
wrinkles [21, 22].

Laser profilometry is used to obtain the shape of the
ribbon. In this technique [28], the sheet is illuminated
with a laser and a cylindrical lens, resulting in an illu-
mination pattern which is proportional to out of plane
deflection as shown in Fig. 1(a). After sweeping the laser
across the sheet surface, and calibrating for the viewing
angle, we obtain the surface profile of the wrinkled sheet
as shown in Fig. 1(b) along with the coordinate system.

The amplitude of the deflection ξ(x, y) from the x− y
plane is shown superimposed on the 3D rendering of the
sheet. One observes that the largest number of wrinkles
and amplitudes occur at the midsection of the sheet, and
decay smoothly to zero toward the clamped edges. This
occurs because of the boundaries conditions at x = 0,
where ξ = 0 and ∂ξ/∂y = 0 for −W/2 ≤ y ≤W/2, and at
x = L, where ξ = y tan θ and ∂ξ/∂y = 0 for −W/2 ≤ y ≤
W/2. Because we find the maximum deflection and the
wrinkles occur along the central transect, we focus in the
following on the profile observed in this crosssection to
identify the onset of the instability and the mode number.

III. ASPECT RATIO DEPENDENT
INSTABILITIES

Fig. 1(d) shows the mode number n as a function of
sheet length to width aspect ratio L/W for a thin la-
tex sheet (t/W = 0.003, T = 0.08). Example transects
obtained using the laser profilometry above the onset of
transverse instability are also shown for several L/W ra-
tios. Because no moment is applied at the free edges,
the transect appears to be curvature free at the edges.
The mode number is then identified from the number of
antinodes observed in the transect where the curvature
passes through a maxima or minima. Following the plot
from right to left, one observes that n increases from
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FIG. 2. (a) Measured ηtr decreases as a function of L/W
with slope consistent with 1/2 for 2 < L/W < 20. The
vertical line separates the clamp-dominated regime and the
bendable regime. (b) The measured critical angle in the bend-

able regime ηB as a function of (t/L)/
√
T corresponding to

L/W > 2 collapses on to a line with slope 1/2.

n = 1 (fundamental buckling mode or buckle) to n = 12
(higher-order buckling mode or wrinkle) as L/W is de-
creased to 1 in this example.

Now, using Eq. 1 and Eq. 2 and substituting the mate-
rial parameters corresponding to the elastic sheet used,
we find that LC/W = 4 and LB/W = 100. Recalling
that for L < LB , the theory predicts that the ribbon
wrinkles, i.e. higher-order buckling modes grows, it is
worthwhile noting that the crossover between fundamen-
tal and higher-order buckling modes occurs for signifi-
cantly smaller aspect ratio L/W ≈ 20 according to our
data than expected by the theory. However, it is unclear
at the moment if the apparent discrepancy is due to a
large numerical prefactor of order 10 in the scaling law,
or due to a deeper issue with the derivation of Eq. 2.

A. Length-dependent instabilities

We obtain the critical twist ηtr when a buckling mode
starts to grow, by applying a prescribed tension and then
slowly increasing the twist while monitoring the sheet de-
flection along the mid-transect of the sheet. Fig. 2(a)
shows the measured ηtr versus L/W plotted in log-
log scale using the same experimental conditions as in
Fig. 1(d). We observe that ηtr decreases rapidly at first,
before decreasing more steadily with L/W . We focus
first on ηtr for relatively large length for which pre-
cise predictions are available. In the bendable regime
(LC � L� LB), the helicoid base state becomes unsta-
ble against higher-order buckling modes above a critical
twist that scales as [24]

ηB = αB
√
t/LT−1/4, (3)

for ηtr � 1 and λtr � W . Here, αB is a numerical
prefactor which is yet to be calculated, but can be de-
termined from our data. The scaling is obtained from
a linear stability analysis assuming a stretched helicoid
base state. (Our previous experimental measurements
of the ribbon morphology showed that this assumption
is valid except very near the clamped edges [21].) This
scaling corresponds to a line with slope 1/2 in the case
where T and t are held constant, and is shown along with
the data in Fig. 2(a). We find that the observed ηtr is
well aligned with this prediction for L/W > 2. Interest-
ingly, no change of scaling is observed at L/W ≈ 20 when
the instability reaches the fundamental mode n = 1.

We measure ηtr to test Eq. 3 in the bendable regime
more extensively over a wide range of applied tension,
sheet thickness, and materials listed in Table I. The ob-
served ηtr in the L-dependent regime where L < LB ,
but above the point where edge effects start to domi-
nate (L > LC), is plotted in Fig. 2(b) as a function of

(t/L)/
√
T . We observe excellent agreement with the pre-

dicted scaling and find αB = 4.0± 0.3.
Now, the corresponding wavelength of the wrinkles in

this bendable regime is given by [24]

λB = αλ
√
LtT−1/4, (4)

where αλ is a numerical prefactor. Here, the scaling with
tension can be noted to be the same as for longitudinal
wrinkles [21]. The difference is the dependence here on
sheet length L rather than the width W in the case of
the longitudinal wrinkles [21].

The wavelength λtr obtained as 2W/n is plotted in
Fig. 3(a) as a function of length and observed to increase
like a staircase function till the maximum wavelength cor-
responding to twice the width of the sheet is reached. The
data is observed to be well aligned with scaling given in
Eq. 4 for λtr/W � 1, with systematic deviations growing
as λtr/W approaches 1. This measured trend is consis-
tent with the estimate calculated in Ref. [24] with system-
atically higher wavelengths for the thicker ribbon. Now,
plotting λtr versus (Lt)/

√
T for the latex as well as the
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FIG. 3. (a) The measured wavelength λtr as a function of
L/W is observed to increase till the fundamental mode is
reached where λtr = 2W . (b) The measured wavelength λtr
as a function of (tL)/

√
T collapses on to a line with slope

1/2 in the wrinkling regime when λ < W consistent with
predictions in the bendable regime.

PET sheets, we again observe good collapse of the data
onto a line of slope 1/2 expected from the theory, pro-
vided λtr < W . We find that αλ ≈ 2.2 ± 0.1. It is
noteworthy that the material parameters have been var-
ied over three orders of magnitude in obtaining this data
and gives a sense of the robustness of the scaling and the
determined αλ.

Thus, we find consistency with the prediction that
wrinkling occurs in twisted sheets which depends on the
applied tension in the limit of thin ribbons. This trans-
verse instability occurs at lower twist angle with increas-
ing tension. This is opposite even qualitatively to the
trend at low tension where longitudinal wrinkling oc-
curs [21, 22]. In that case, the instability occurs at in-
creasing twist angle as the tension is increased until the
crossover tension Tλ is reached.

Furthermore, the points corresponding to the thicker
latex ribbon (t/W = 0.006 and LB = 30) can be noted to
be especially interesting and may point to a larger range
of validity for the scaling shown in Eq. 3 than implied by

the calculation assuming λtr < W . In particular it can
be noted that for this thicker ribbon, ηtr is observed to
scale consistent with Eq. 3 even though the fundamental
mode is observed over a considerable part of this range.
Thus, the scaling appears tied more strongly to the length
dependence of ηtr rather than the condition that λtr �
W . Further theoretical developments are still necessary
to better understand this regime.

Focusing on the small L/W limit in Fig. 2(a), where
L ∼ LC , the trend in the data shows that elastic
sheets become unstable and develop higher-order buck-
ling modes above a critical threshold ηtr which is found
to be significantly larger than the predictions given by
Eq. 3. Further, the measured λtr is found to be slightly
smaller than predicted by Eq. 4 in the same range of
L/W . Here, we argue that edge effects are responsible
for the significant deviations of the measured threshold
and wavelength from predictions. We note that the pre-
diction LC/W = 4 is consistent with a change in scaling
for ηtr (see dashed in Fig. 2(a)). This result suggests
that the clamped edges are responsible for delaying the
appearance of wrinkles for L/W & 1, but do not suppress
the instability.

The observed wrinkles in the clamp-dominated regime
bear some similarity to tensional wrinkles observed at the
center of uniaxially stretched sheets [13, 29, 30]. In that
configuration, the uniaxial state of stress of a stretched
membrane is frustrated by the clamped boundaries which
induce shear and transverse stresses [31]. Therefore, de-
velopment of transverse compressive stresses can give rise
to an instability driven by the clamped edge stresses [13].
Later numerical studies indicate that the wrinkling in-
stability in fact occupies only a bounded region of the
L/W -T phase diagram [30]. However, in spite of these
developments, the fundamental reason for the develop-
ment of a compressive zone away from the boundary re-
mains unclear.

Now considering our twisted sheet configuration, we
also argue that the frustration of the helicoid base state
by the clamped edges is an essential ingredient to ex-
plain the delayed wrinkling instability. However, in-
stead of giving rise to the wrinkling mechanism in axially
stretched sheets, the clamped edges of a twisted sheet ap-
pear to act as a stabilizing effect in determining ηtr. We
reach this conclusion because of the relatively higher rise
in ηtr in the clamp-dominated regime compared to the
bendable regime seen in Fig. 2(a), and relatively lower
wavelengths as well in Fig. 3(a). A theoretical approach
of the wrinkling mechanism in this regime which includes
both twist and stretch loading at small L/W is not avail-
able, and is outside the scope of this study.

B. Length-independent Instability

In the limit where ηtr becomes independent of L,
Chopin, Demery, and Davidovitch [24] calculated that a
novel buckling regime would be reached where the sheet
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FIG. 4. (a) ηtr crosses over from decreasing inversely as the
length to becoming L-independent as the length is increased
for the PET ribbon held at constant tension T = 0.003.
The crossover occurs as the contribution of the L-dependent
tensional stiffening to the stability decreases to zero relative
to the L-independent bending contribution. (b) The criti-
cal twist angle in the stiff regime ηS plotted as a function of
(t/W )/

√
T along with linear fit given by Eq. 5.

destabilizes in the fundamental n = 1 mode at a critical
twist angle in the stiff regime

ηS = αS(t/W )T−1/2, (5)

where αS = 4.4 was obtained numerically at large T .
For small T (< Tλ) and in the limit η2/T � 1, the devel-
opment of the longitudinal wrinkling instability far-from-
threshold allows one to approximate the ribbon base state
as being essentially a helicoid stretched in the vicinity of
the free edges with a vanishing compression everywhere
else. Using a linear stability analysis with reference to
this post-buckling base state, αS = π/

√
3 was calculated

analytically.
To reach this regime, we now consider extremely

long ribbon experiments performed in the stairwell (see
Fig. 1(c)), in addition to those performed in the lab. The
measured ηtr as a function of L/W for L > 2 m is shown
in Fig. 4(a). For L < LB , we observe scaling consistent

with Eq. 3, but then as L is increased above LB , clear
deviations are observed as ηtr occurs at a constant value
within the error of measurements which is approximately
±5% in this case.

To understand the effect of this length independence
on the scalings, ηtr ≡ ηS is plotted in a linear-linear
scale as a function of (t/W )/

√
T in Fig. 4(b) for the data

corresponding to the L-independent regime. A linear fit
according to Eq. 5 with αT = 3.2 ± 0.2 is also shown
which is consistent with previous calculations. However,
significant deviations can be also noted from this form
which are somewhat higher than the error in the identi-
fication of ηtr. In the case of the PET ribbons used here,
lowering the T resulted in approaching Tλ, the transition
to the longitudinal limit, while increasing T beyond the
reported range resulted in plastic deformation. Further
experiments are needed to fully test this scaling over a
wider range of T . However, this is beyond the scope of
the materials available to us. Nonetheless, it is clear from
Fig 4(a) that the instability occurs at a much higher twist
than predicted by Eq. 3, clearly demonstrating that the
nature of the instabilities in the bendable and stiff regime
are different.

To understand the two different mechanisms operat-
ing in the L-dependent bendable regime, and the L-
independent stiff regime, we start by identifying the
forces acting normal to the sheet and examining their
relative contributions. Besides the transverse compres-
sive force which is driving the instability, two stabilizing
forces act on the sheet: a bending resistance penaliz-
ing large curvature, (or equivalently, small wavelength),
and a tension-induced restoring force which prevents the
development of large amplitudes. For large L/W , the
tension-induced force is not sufficiently high to penalize
the fundamental mode in favor of higher-order modes of
smaller amplitude but larger curvature, thus the funda-
mental buckling mode is observed. As L/W is decreased,
the tension induced force is of the same order as the bend-
ing resistance, which indicates that wrinkling modes start
to be energetically favorable. This crossover length be-
tween a L-dependent to a L-independent critical twist is
observed to coincide well with the predicted LB . By con-
trast, the transition from mode number n = 1 to n > 1 is
observed to occur at a significantly smaller length than
LB .

IV. CONCLUSIONS

We have experimentally studied the transverse wrin-
kling of a thin elastic sheet held under tension and
twisted about its long axis. The critical twist is found to
be not only dependent on the aspect ratio of the sheet,
but also on the applied tension along the axis around
which the sheet is twisted. Three distinct regimes are
identified, consistent with recent theoretical model of
transverse buckling developed starting from a covariant
form of the FvK equations.
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To rationalize the different instability regimes, we in-
troduced two characteristic lengthscales: a clamp length
LC and a bendability length LB . When L > LB , the in-
stability is L-independent. We find that the sheet desta-
bilizes in the fundamental buckling mode and that the
critical twist decreases proportional to the thickness, and
as inverse of the width and the square root of the ap-
plied tension. This instability occurs in the stiff regime
as the cross-section is only slightly curved. When the
length is decreased below LB , the instability becomes L-
dependent. For intermediate length L > LC , the sheet
destabilizes into fundamental or higher-order buckling
modes. We identify these instabilities with the bendable
regime. When higher-order buckling modes develop, the
critical twist and the wavelength of the wrinkles slowly
but systematically decrease as the fourth-root of ten-
sion. However, it was unanticipated that the fundamen-
tal mode can develop in the bendable regime character-
ized by a L-dependent threshold. At even smaller length
L < LC in the clamped regime, the clamped bound-
ary conditions delays the development of the instability
with greater twist required to wrinkle the sheet because

the sheet is under tension near the boundaries along the
transverse direction.

Thus, our experiments provide a thorough test of the
scaling approach and the regimes of their applicability,
as opposed to direct numerical simulations of the thin
plate equations which, while accurate, give rise to less
insight on the development of the instabilities, and the
various operative mechanisms. This approach also yields
simple forms for the dependence on material parameters.
Our study provides the prefactors in addition to testing
the derived scaling laws against materials with Young’s
modulus distributed over three orders of magnitude.
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