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The collective-coordinate and correlated-basis-function approaches are systematically applied to the
determination of the elementary excitation spectrum w(k) and the static structure function S(k) for two
models of a Bose gas which can be characterized by a single small expansion parameter g. Results are
obtained to first order in g, the leading order in which multiexcitation processes are present, and are
compared with those found by the microscopic-dielectric-function approach. It is found that a collective-
coordinate calculation of w(k) by Sunakawa, Yamasaki, and Kebukawa is incomplete to first order in g and
that the convolution approximation for the three-particle distribution function in the correlated-basis-function
formalism leads to incorrect results for overlap matrix element and for S(k). A form for the overlap matrix
element is proposed which leads to correct first-order results. Various properties of w(k), S(k), and the

dynamic structure function are discussed.

I. INTRODUCTION

The correlated-basis function® and collective-
coordinate? formalisms have been extensively ap-
plied to the calculation of the equilibrium proper-
ties of superfluid *He. Sunakava, Yamasaki, and
Kebukawa? used a collective-coordinate approach
to calculate the elementary excitation spectrum
w(k) and static structure S(%) of superfluid *He and
found qualitative agreement with experiment. Jack-
son and Feenberg3 utilized the correlated-basis-
function formalism and made the convolution ap-
proximation for the three-particle distribution func-
tion to obtain w(k). However, some of the assump-
tions, e.g., the convolution approximation, made
in the application of these formalisms lacks a firm
theoretical basis. For this reason we apply in this
paper the correlated-basis-function and collective-
coordinate formalisms to two simple models of a
zero-temperature Bose gas, which are character-
ized by a single small dimensionless parameter.
Explicit numerical calculations to the first order
beyond the Bogoliubov approximation are made for
w(k) and S(k) and the results are compared with
those found by using the microscopic-dielectric-
function® approach.

We introduce in Sec. II the small parameter g
and appropriate units for the dense charged Bose
gas and the dilute Bose gas, respectively. The
dielectric-function* formalism of Bose systems
allows us to make rigorous perturbation approxi-
mations that are consistent with the general sym-
metry requirements of Bose systems., The first-
order approximation is of interest since it repre-
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sents the simplest approximation in which multi-
excitation processes appear and is discussed in
Sec. IITA., We consider the first-order excitation
spectrum w'’(k), the dynamic structure function
S (%, w), and the static structure function S*(%)
in Secs. IIIB-IIID, respectively. Numerical re-
sults for w‘(2) and S*’(k) are shown for the
charged Bose gas in Figs. 1 and 2. For the
charged Bose gas it is found in particular that
0™ (%) is an analytic function of the wave vector &
through at least order %°, the high-frequency limit
of S (%, w) is proportional to k*w™'"2, and that due
to the backflow and continuum contributions the
single-excitation Feynman relation S(&) = £/2mw(k)
breaks down at order &%,

We follow the general approach of Sunakawa,
Yamasaki, and Kebukawa? (SYK) in Sec. IVA, ex-
press the Hamiltonian in terms of density and ve-
locity operators, and retain terms in the Hamil-
tonian through first order in g. We use standard
perturbation theory in Sec. IV B to obtain w*’(%)
and determine S*(%) in Sec. IV C using a method
analagous to that used by Bhattacharyya and Woo®
(BW). The results for w™(2) and $*’(%) are shown
to be consistent with the field-theoretic results of
Sec. III, and an error in SYK’s calculation of w‘’(%)
is indicated. It is also seen that contrary to SYK’s
claim, it is possible to obtain w‘’(k) free of di-
vergences using standard perturbation theory.

In Sec. V we discuss the general features of the
correlated-basis-function calculation of BW in
which () is determined by two independent
methods. The first method outlined in Sec. VA is
based on the Bijl-Dingle-Jastrow form® of the trial
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function and yields a w‘"’(%) that is consistent with
the results of Secs. IIIB and IV B. In the method
given in Sec. V B the ground-state correlations are
assumed to be known exactly. The convolution ap-
proximation® for the three-particle distribution
function is made in order to evaluate a certain ma-
trix element (usually referred to as the overlap
integral) which enters into w*’(k). The second
method yields an expression for w®*) in terms of
S and S is determined indirectly by setting
equal the two expressions for w'’(¢). The result
for S(k) is shown in Fig. 2. We summarize and
discuss our results in Sec. VI. A brief report of
some of our results was given in Ref. 6.

II. SMALL PARAMETERS

We consider a system of N spinless bosons at
zero temperature of mass w enclosed in a volume
V with the density n=N/V a fixed constant. The
Hamiltonian is

1
H=3 ey 5y 2 0(@)ah ity gay,  (2.1)

kk'ya

where €,=F#/2m,
v(q) = J‘dfeia'fv(r)

is the Fourier transform of the interparticle poten-
tial v(»), and @} and @, are the usual boson creation
and destruction operators. We choose units such
that Z7=1 and V=1. The procedure® for determin-
ing a well-defined field-theoretic model in the pres-
ence of a macroscopically occupied zero-momen-
tum state is well known.

We consider two models of a weakly interacting
Bose gas which can be characterized by a single
small dimensionless parameter. For the high-
density charged Bose gas we shall use the system
of units in which the energy is measured in the
plasma frequency w,= (4me®n/m)"? and the momen-
tum is measured in.terms of (wpm)”z. The small
dimensionless parameter g is defined as

g=(4rPm)**ntt, (2.2)
In the new system of units we have
wp=m=1, g=nt=4r. (2.3)

We also consider a simple model of a Bose gas
for which v (k) can be summarized by the s-wave
scattering length a. We use the system of units in
which the energy is measured in terms of msg and
momentum in terms of ms,, where s,=(4ran)*’?/m
is the Bogoliubov sound speed. The parameter g

is defined as
g=4mams, . (2.4)

We now have a new set of units in which
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(2.5)

To the order of approximation of interest the pa-
rameter v can be eliminated by using the perturba-
tion expansion for the scattering length a in powers

sp=m=1, g=nt=4na.

of v. We write
d’p 1 3
g=4na=v+JWv_—2€:v+O(v), (2.6)
or rearranging (2.6) we find,
v/g=1+gv"+0(g?), @.7)
where
w_ (4 1 (2.8)

") @) 2¢,

The large-p divergence in (2. 8) arises from the
point nature of our model interaction. It will can-
cel other divergent terms so that the physical quan-
tities of interest are well defined. It will be con-
venient in the following to define the quantity

1/#?, charged bose gas
1

¢m={ (2.9)

, dilute bose gas.

III. DIELECTRIC FORMULATION
A. Formalism

The generalized dielectric formulation*? of Bose
systems allows us to make rigorous perturbation
approximations that explicitly show the coincidence
of the single-particle and denisty spectrums, satis-
fy local number conservation, and yield a gapless
excitation spectrum. The dielectric formulation
has been used by Ma and Woo” to obtain the first-
order correction to the excitation spectrum of the
charged Bose gas and by Wong and Gould* to obtain
the first-order correction to the excitation spec-
trum, dynamic structure function, and static struc-
ture function of a dilute Bose gas. Since the dielec-
tric approach has been reviewed in detail in Ref. 4,
we collect here only the important formulas.

The dynamical variables of interest are the am-
plitude operator

Uy = { o K=+
g atk, ==, (3' 1)
The density operator
’
p(R) =152, 6 ,+ Z alay.y, (3.2)
b
and the current operator
T 17 ! e 1
J0) = (R0 3%0,0,+ 22 B+ 3D)aptyn,  (3.9)
4

where 6, =1, B, =sgny, and the prime on the sum-
mation sign indicates zero momentum operators
are excluded. Repeated Greek indices are summed.
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We define the (matrix) amplitude, density, and
current response functions, respectively,

gunlly ) = =i [t (a0, )00, (3.9)
F(ky, w)=—1 f dt et ([p, (), pIlYo(®), 3.5)
Fee(e, )= 1 [ dt K [TED, TTDO0),  (3.6)

where the superscript z denotes the component of
J in the direction of k.
In the dielectric-function approach the response

functions are expressed in terms of the correspond-
. ing regular functions (those that do not involve an

isolated single-interaction nor an isolated one-par-

ticle line). In this way the denominators of the re-

sponse functions (3.4)-(3.6) can be related to the

dielectric function €(k, w) which is defined by

F=F/e, (3.7a)

e=1-vF, (3.7p)
and, in particular, F#* can be written as

F# - \2G, A4 F5" (3.8)

The irreducible functions (those that contain no
isolated single-interaction line) of g, § and F **
are denoted by capital letters G, F, and F**, Reg-
ular functions are further distinguished if necessary
by a superscript ». The (regular) vertex function
A% joins the one-particle line to the longitudinal
current vertex. An application of the continuity
equation yields the relation
PF=F(F=in/m). (3.9)

We see from (3. 7)-(3.9) that an approximation for
the regular longitudinal current response functions
F#" agnd A% automatically leads to approximate
density response function that is consistent with
local number conservation.

We develop a perturbation expansion and write
for example

/205 =3B, (1 - 3gn’ V) + gAZV 1 O(g%), (3.92)

gn'=gn’ M+ 0(¢), (3.9b)
G,,=GL)+gG) + o0&, (3.9¢)
ngz'r:ngsr(l)+ o(g?, (3.94)
gF#=F=0) , gpae), 0o(g?), (3.9¢e)

and collect the O(1) and O(g) terms in (2.7) and
(3.7)-(3.9). We use the fact that F#®© = €4(u?
- €2 and find after some algebra

FO = 2[o? - 0O (k)] (8.10)

and
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5“’(]@, w) = (kZ/wz)[wz - w(O)(k)Z]-zmzz(l)(k’ w) ,

where (8.11)

Enu(l)(k, w) = €k(w2 _ Ei)Z[S-(l)_'_Iwz(l) — u(l)

+ zwaqull)/k+ kﬁuA;(l) - €knl(l)]

+ (wz - €i)2thr(1)

+ Flwe, A+ (81 - u W)+ o],
(8.12)
In (3.12) S=3(M,,+ M.)), A=3(M,, - M._), My=M,_,
and M, , is the irreducible self-energy. To avoid
confusion we note that the term involving ‘" in
(3.12) only enters for the dilute Bose gas. The
0(1) Bogoliubov excitation spectrum w’ is

w® (k) = K38+ ¢ ()2 (3.13)
The one-loop diagrams for M, AZ®)| and Feer)
are shown in Fig. 6 of Ref, 4, The evaluation of
those diagrams is straightforward and the corre-
sponding one-loop integrals are

1(d®
3(1)+ Mzu) - “(1) ='2' J'(_E;)gi ¢(p)[xp+k_ AP]

1048
*3 Izz—w)% S (DM par

X [¢(p)+ ¢@+K)1Q", (3.14)
SV - Mg - p = 2 (2 ) B 6 () 1/ Ny
3 [ &b o
X[BE+ )+ 0(p/Ma]Q", (3.15)
A“’*—f(z—s¢(1>)>\,[¢(p)+¢(5+§)]Q‘, (3.16)

5 Aa(l) 2 (zﬂ)s(p(l))()\ }\p*k)(p k+2k) ’ (3 17)

8050 =2 [ L 60 Ny DG B 20Q
(3.18)
gar(l) _ dp(l A)(+—7\)",“12+
F 4 (271)1 £ Ap k £ (p k+ Zk) Q 1
(3.19)
) _ d? da’p (- A
n' 4 @) _——L-A, , (3.20)
with
Q@ =[w-wPPE+k) - w(p)]?
Flw+ 0O+ K) + 0 (p)]? (3.21)
and
A= €,/ 0P (D). (3.22)
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FIG. 1. First-order excitation spectrum of the
charged Bose gas. The solid line is the result of the di-
electric formulation, The open circles are the result of
the collective~-coordinate and the correlated-basis-func-
tion calculations, The dotted line represents the long-
wavelength expansion of w®(k), Energy is measured in
terms of the plasma frequency w,, and k is measured in
units of (wym)!/2,

B. Elementary excitation spectrum

The elementary excitation spectrum w(%) is de-
termined by the zero of €(k, w). We use (3.7b) and
(3.9) to rewrite the equation € =0 as

w(k)?/B = /9)1+gF *(k, w)],

and develop a perturbation expansion for w(k)

(3.23)

w(k) =@ k) + gw® (B)+ 0(g?), (3.24)
o F 22(0)
ngz=Fzz(0)+g (Fzz(1)+zw(o)(k)w(l)(k)_g_(;z_)

+0(g?. (3.25)

All quantities on the right-hand side of (3.25) are
evaluated at w®(%). If we use the form of F#©®
given above and collect the O(1) terms in (3.23)-
(3.25), we find the result (3.13) for w®(2). To
O(g) we find

w(l)(k) =5Rzz(l)(k’ w(O)(k))/zw(O)(k)a .

We consider the evaluation of w*(%) for the two
models of Sec. II. For the charged Bose gas ¢ (k)
=1/%%, and we write (3.13) and (3.22) as

w(O)(k) - (1 + %k4)1/2 s
A= 2(L+ 5RNME,

We find that in the long-wavelength limit w’(%) has
the form

WP () = o2+ cyk + c5k°+ O(F°)

(3.26)

(3.27)
(3.28)

(3.29)

where

R Pi(pt+ B

Cy=— 32172L dp (p4+3)(%p4+1)3/2
=—-4,679%107, (3.30)

c,=1.881x10"3 (3.31)

1 © 1 |p+1

05“‘1927;2]0 e e

=-2.604x10"%, (3.32)

The coefficients ¢, and ¢, have been evaluated nu-
merically. The integral for ¢, is given in Ref. 8.
Note that w*’(%) in (3.29) has both even and odd
powers of & and that the £° term arises from the
expansion of (3.15), The coefficient ¢, was first
obtained in Ref. 7; the coefficients are believed to
be new. The result of a numerical evaluation of
(3.26) for ¢ =1/%* is shown in Fig. 1 and is in
agreement with Ref, 7. We also show for compari-
son the small-% expansion (3.29).
For the dilute Bose gas ¢ =1, we write (3.13)

and (3.22) as

w @ (k) = (1 + 3£, (3.33)

Np=R/2(1+ 5RH2, (3.34)
The small-% expansion of w() for ¢ =1 is given
in Ref, 4 in which it is shown that (%) is a non-
analytic function of % in contrast to (3.29). We do
not evaluate w‘’(%) numerically for ¢ =1 because
of the appearance of vanishing denominators in the
integrals (3.14)-(3.19) which make the resulting
principal-value integrals not really amenable to
numerical evaluation.

C. Dynamic structure function

At T=0, the dynamic structure function S(%, w)
is the positive frequency spectral function of F(%, w)

{- /7 ImF(k, w), w=0

0. e (3. 35)

S(k, w) =
To O(g), S(k, w) is found from (3.10) and (3.11)
to have the form
gS(k, w)=Z 2 (F)8(w - w® (k) - g (k)
+8Z P (R)5(w ~ w® (%))
+8Y P (R)6(w - w(R)+ gXV(k, w), (3.36)
where
YOk, w) = — [#2/40® (R)?]

_d___ =2.,.22(1)
X [w® O, )] o, (3.37)
X‘”(k, w)=— kzw-z Re[wz - w(O)(k)Z]-z
X (1/7) Imar™* ™V (k, w), (3.38)

with



ZQ(R) = /2mw® (k)
and
ZPR)==-Z R0V (R)/w® ().

As discussed by Wong and Gould* the first two
terms on the right-hand side of (3. 36) represent
the single-excitation contribution which exhausts
the f-sum rule, the backflow term Y*(%) arises
from virtual multiexcitation processes, and the
continuum X (2, w) represents the contribution of
real multiexcitations. It is easy to show that (3. 36)
satisfies all the relevant sum rules.

It is of interest to determine the high-frequency
behavior of S(, w) where only (3. 38) contributes.
In the limit w> w!2>1, we can write (w>0)

- (1/7)ImQ* =5(w-p%), (3.39)
and X)(%, w) takes the form

XV, w) = (k4/81rzw7’2)¢(w1’2)2'(1—75+%fduu%f
v [ autups - 209, (3.40)
where ¢, is defined by ¢,,,/¢,=1+ b+ -+ with

p=w"? and u=cos(k, p). For the charged Bose gas
¢y =~ 2u/w!? and from (3.40)

XD (k, w) = (23/1207 %) w12, (3.41)
For a dilute Bose gas ¢,=0 and
XD(k, w) = (7/12072) w2, (3.42)

as was obtained in Ref. 4, in which the interpreta-
tion of (3.42) was discussed. It is interesting to
also consider a potential of the form ¢(p) = PP
for which we find from (3.40) (¢, = - 202w/%y)

XD (k, ©) = (1/12072) kw2 g0 (3.43)

An inspection of (3.43) shows that there is an in-
termediate frequency range in which X)(%, w) has
the same frequency dependence as (3.42).

D. Static structure function

The static structure function is given by

S(r) = L” dw S(k, ©) . (3. 44)
We write

gS(k) = SO (k) + g (R) + O(£?), (3.45)
and find from (3. 36) and (3.22)

SR =ZQ (k) =1, (3. 46)
and

SVE)=ZP(R)+ YV (R)+ XV (R), (3.47)
with

XD () = I dw XV (R, w).
0
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We see that Y'*) and X¥ are the O(g) corrections
to the single-excitation Feynman relation S(Z)
=12/2w(k).

For the charged Bose gas it is easy to find from
(3.29), (3.37), and (3. 38) the small-# behavior
Z0(k)=2.339%107%*, Y™ (k) =~ 1.085X10-3%%,

XV (k) =4.57%10"*%*, and
SM (k) = sy + O(%) . (3.47a)

where

ool f"dppz[lsw‘°’(p)2+15w‘°’(1))—2]
£7 24072 J, 0P (pP2w® (p)+ 1P

=—=1,711x10",

(3.47b)

The integrals leading to (3. 47) have been evaluated
numerically. Both Y™)(2) and X*'(k) are O(%%),
and the Feynman relation breaks down at O(k'). A
numerical evaluation of S*’(%) is shown in Fig. 2.

IV. METHOD OF COLLECTIVE COORDINATES
A. Hamiltonian in terms of collective coordinates

The Hamiltonian (2.1) can be expressed in terms
of collective variables in a variety of ways. Bogo-
liubov and Zubarev® introduced the density operator
as a collective variable in a microscopic formula-
tion of many-boson systems., However, in such a
formulation, 1° special techniques must be developed
to treat the non-Hermicity of the resulting Hamil-
tonian. Current and density operators have been
considered by several workers'! as a pair of dy-
namical variables. Since the current and density
operators do not form a canonically conjugate pair
of variables, this approach is not convenient. One
of the more successful approaches has been that

]
003+ 1
_..002} -
=
0
001 4
1
0 1.0 2.0
k
FIG. 2. First-order static structure function of the

charged Bose gas. The solid line is the result of the di-
electric formulation. The open circles are the result of
the collective-coordinate approach, The dashed line is
the correlated-basis-function result of Bhattacharyya
and Woo, k is measured in (w,m)! /2,
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of Sunakawa, Yamasaki, and Kebukawa? (SYK) who
introduced a canonically conjugate density operator
and velocity operator. We follow their general ap-
proach and define the density operator p(%k) and the
velocity operator G(k) as

p(R)=N"2 3" dla,,, (4.1)
b
Tk =F(k) - N2 3" (o - R)YE(p), @.2)
bER
where
Jr)=N"23" G+ K)abay,, . (4.3)
b

We have introduced the factor of N-'/2 in the defi-
nition of p and J so that the N dependence of the
various terms of the Hamiltonian is transparent and
we shall use the new normalization from hereon.,
The collective-coordinate approach is based on the
assumption that the density fluctuations are small
compared with the average density, i.e.,

p'®)=px) -n<n, (4.4)
so that we can write
1/p()=(1/m){1 =o' @) /n+[p'@)/nf=--}. (4.5)

We restrict the domain of the velocity operator
to the subspace of the Hilbert space defined by
kx(r)=0. In this subspace the () commute
among themselves. The Hamiltonian can thus be
written in the form

H=Hy+H+Hy+---, (4.6)

where

Ho—__(Z_V_l) (0) - Z [

? 1 znv (k)]

2}: {32+ o () lp (R)p(= &)+ T(R) - F(- B},

(4.7
J
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E (B) - p(&+D) - U(p)

VN 55
173
+3(&- D)pRp(-k-D)p(p)], (4.8)
and
B= 3 E. GrqeDopo@p®
BNkzpza#O
xp(-3-K-p). (4.9)

The terms H,, H,;, and H, contain products of two,
three, and four operators, respectively. In the fol-
lowing we shallwrite g=1/N in H, and H,, because
V=1. Note that we have retained terms toO(g) in H.
The Hamiltonian (4.6) can be simplified by di-

agonalizing the quadratic part of Hy. We write
p(R) = 2y2c(R)+ cT(- B)], (4.10)
(k) = sk 2[c(- 2) - c'(B)]. (4.11)

The operators c'(k) and c(k) satisfy the usual Bose
commutation relations., We use (4.10) and (4.11)
to write (4.7) as

Hy=Ey+ Z wo(k)ct (k) (k) 4.12)
with
Ey=+N(N - 1)2(0)
i Z'[wo(k)—%kz-nv(k)]. (4.13)

2%

In the above, 1, is given by (3.46) and wy(k) is de-
fined as wy(k) = k@K +v/g)"/?. For the charged
Bose gas v/g=¢ and wy(k) is identical to w® (k)
given in (3.27). However, for the dilute Bose gas
we have from (2.7)

wo(k) = w (k) + gkPv P /20O (k) (4.14)

where w® (k) is given in (3. 33).
Hy and H, can be written in terms of the excita-
tion operators ¢ and c' as

H=g"" 3 Ak plele(=K=Ble(p)+ ' Fsplelt)e(p)+ H.c. ]
Ry 03 RE=D
+ g2 }_; Ay (B, p) L' (B)c(®+p)e(-p)+ H.c. ] (4.15)
ke D E=p
and
Hy=g kzpj;oAs(k, oy ) lle(p)+ c'(= Plle@+ (= Dl [c®@ + M= B [c(-P-T-K)+ P+ T+ B},  (4.16)
ki k+p+
I
where
L A, \V2 Nawp \M72
Ml 4G D (%) @), @ AP =-4ED(35) @), (@19)



and

Aﬁ(k) p’ q) = %(xkkp)\qxpd-q-rk)llz [K * (E+ §+ a)] .

B. Elementary excitation spectrum

(4.19)

We use standard perturbation theory to evaluate
the excitation spectrum to O(g). The ground state
of the system corresponds to the vacuum state 10).
The multiexcitation states are given by

|ﬁ>= ‘EI:EZ)E:B: e ,En>

=H c',)]0),

with 3, ;=K and II, &, #0, #=1,2,3, ... .

The excitation spectrum can be found from the
difference between the energy of the first excited
state and the ground-state energy. In second-order
perturbation theory we write w'’(k) as

w P (B) = 0, (k) + wy (),

(4.20)

(4.21)
1

1 a3p

_-’ e K 2
wall) =L |k —p, pl H; | k)|

where
| Hyl k) = Eg+ wolk) ,
<E_575{H0|5’E—5>=E0+w0(p)+w0(lﬁ—5‘) ’
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with
wi (k)= (k| H'| kY- Q| H'|0), (4.22)
_ e | H' | B2
w2l)= 2 T T G T
[m | H"10)|2 @.23)

T 44 (01 Hy10) = (m | Hylm)’

where H' = H,+ H,. Note that there is an additional
term Ko /2w (k) in (4.21) for the dilute Bose
gas. Since H, is a product of three operators, its
expectation value in (4.22) vanishes. If we substi-
tute (4.16) into (4.22) we find

X (AP
4 ) 2n)?°

w; (k) = &+p)n,. (4.24)

We use (4.20) to write (4.23) in the form

I, p, —k —pl H,10)|2

1 d®p
2 ) @r® & HJK) -&-p,pl Holp, K—p) @ 2 f(Zw)s (01 Hyl0) =&, p, -k —pl| Hyl =K -, p, K’

(E, p,i—k-ﬁlHo!E—E—E,ﬁ, E)=Eo+w0(k)+w0(p)+wo(|a—12—1;() .

It is straightforward to use (4.15), (4.17), and (4. 18) to write the matrix elements in (4. 25) as

G -p, p| Hy|K) =5 N iz5)) V2 [(B2 492 —K - DI gy =D - (R =P)N =D - BNjgy -~ (R -p) - BN, ],
&, 5, -k —5|H1l 0) =5 (N iig) [ (R +p?+k - ﬁ)xhxpxlf-x;l -p- (E"'ﬁ)}‘k +p- E)\u?n?l +(k+p) - EM] ,

and to substitute (4. 26)—(4. 28) into (4. 25) to obtain
the integral for w,(k). The integral (4.24) for

w, (k) is divergent for large p but this divergence is
canceled exactly by a similar divergence in the in-
tegral (4. 25) for w,(%) [and by the term proportion-
al to v in (4. 14) for the dilute Bose gas]. Thus
we see that it is possible to use standard perturba-
tion theory to obtain an excitation spectrum to first
order in g free of divergences in contrast to SYK's
claim that standard perturbation theory leads to
divergent results.

The explicit appearance of the potential ¢ in the
integrals (3. 14)-(3. 18) makes it difficult to show
that the above result for v (2) agrees analytically
for all # with the field-theoretic result (3. 26).
Therefore, we limit ourselves to showing that the
two results for w'? (k) agree analytically in the lim-
it k= 0. For the <hoice ¢ = 1/k% we can use (3. 27)
and write (4. 24) in the limit 2~ 0 as

(4. 25)
4. 26)
(4.27)
(4.28)
]
2 ©
)= gz [ AP akpIE (4.29)

In the same manner we can write the matrix ele-
ments (4. 27) and (4. 28) for -0 as

B,k -p|Hy k) =~EB2)V2 [ p?r, +p225t - 2

+8 (k- BYr,p2 1, (4.30)
(&, p, -k -p| H,]0) =, k -p|H,|k)
—R(32)YE 202 (0, + 25 ] . (4.31)

If we substitute (4.30) and (4. 31) in (4. 25) and take
the B~ 0 limit of (4. 26) we find

PA(pY*+1p° +16pt + )
(p*+3) (1+5p7%

(4.32)
so that from (4. 21), (4.29), and (4. 32) we have

ka w
o) =~ gz [ ap
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Oy By [ ap LR

w )(k)——32ﬂz A dp (P4+3)(1+%P4)3/2 . (4-33)
We see that (4. 33) is identical to (3.30). We have
numerically evaluated the integrals (4. 24) and
(4. 25) for the charged Bose gas up to 2=2, and the
results are shown as open circles in Fig, 1, We
see that the field-theoretic and collective-coordi-
nate approaches for »'¥ (%) are consistent.

For the dilute Bose gas we must include the 0(g)
term in (4. 14) and write

WP (k) = wy (k) + wa (k) + 2P /20 P (k) . (4.34)

Then in the same manner as above it is easy to take
the small-% limit of w, and w, for w‘? (%) given by
(3. 33) and to recover (4. 24) of Ref. 4.

C. Static structure function

We determine the static structure function by
employing a method analogous to that used by Bhat-
tacharyya and Woo.® The method is to obtain an
expression for w(k) that is related to S(k), set this
expression equal to our previous result for 0wV (k)
and hence determine S(k) to O(g).

Let us define a new set of multiexcitation wave

functions by
>, _ -1/2
‘E) Js(k)] p(k)|0) (4. 35)
I ky, kp) = [S(k1)s(kz) ]‘1/2p(k1)p(kz) ’ 0, )

(k —p, p| Ho+ Hy — Eo|K) =4 g2 [NAh iz TV 2 [K - DAy +K - (R=D)A, 1,
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etc., where |10) is the exact ground-state wave
function and S(&)= (01 p*(%)p(k)! 0) [the latter defini-
tion of S(%) is equivalent to (3. 44) except for the
different normalization]. We consider 6H=H

(kI HI 17:) as the perturbation and find, using stan-

dard perturbation theory, that

w(k)= wp (k) + €,(%) , (4.36)
where

wr (&)= (0| 6 H|0) = £?/2S (%) 4.37)
and

1 | (k —p, pl 6HIK)I?
(k)= 3 ,,?,?;0 wor ) - on () —apE—p) © 4 %8)

To evaluate €,(k) to O(g) we need retain terms in
6H to O(g'?). We write
(l_E -p, p' 5I:I|k)= (k "Bv 5|H0+H1 -EO‘E)

"wl)(k) (E'-p’pfk) ’

where the second matrix element in (4. 39) is fre-

(4.39)

quently referred to as the overlap integral, We ex-
pand to first order in H; and write
H.
[0)=]0)+ =—2—|0)+---, (4.40)

Hy - E,

where |0) is the vacuum state defined in Sec. IV B.
We use (4. 15), (4.17), (4.18), and (4. 40) to write
the matrix elements in (4. 39) as

(4.41)

Gk —-p, BIR)=5 8" Mgz ) V2 [2/20 + ([ = p| /20 51 +0%/22, 1

x[= (k- P (L+2) =K+ (R =PI, (14 2025) =D - (R =DM (1+ 205507,

and obtain

(4.42)

(k -p, p| 8H (k) =2 & 20 MMz )V 2Nl PPN zp + (& — D20 + BNz T2 {[R2 4 5% + (& - D))

[k (& —p)A3(1 = 2% + K- D% (1 =2D)] =26k - k- K =p), - 1557,

where ), is defined in (3. 22). We obtain €,(%) to
0O(g) by substituting (4.43) into (4, 38) and replac-
ing wr (&) by w‘? ().

Because of the factor N'V2 introduced in the def-
inition (4.1) of p(k) we write S(k) to O(g) as

S(&) =S (&) +gS? (k) (4. 44)

so that S‘” and S'? have the same meaning as in
(3.45). We substitute (4.44) into (4. 37) and use
(4. 36) to write w(k) to O(g)

w(k)= w'® (&) + ge, (k) + g[- 25V (R) /25 (£)?] .
(4. 45)
In (4.45) we have explicitly shown the O(g) depen-

(4.43)

f
dence of €, We now compare the first-order
terms in (4. 45) with the previous result (4. 21) for
0™ (%) and obtain the result for SV (k)

SV (k) = — 28V ()2 /K2 [w (B) + wa(k) — €5(k)], (4.46)

where the integrals w;, w;, and €; all involve

S (). We have thus shown that the collective co-
ordinate method allows us to calculate both w'Y (%)
and SV (%) in a simple manner,

We limit ourselves to showing that for the
charged Bose gas S'¥ (k) in (4.46) agrees analyti-
cally for small % with the field-theoretic result
(3.47). We take the 2~ 0 limit of (4.43) and (3. 27)
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and find that

k423 21— (1+4pH)Y2]
‘2(k)=fé6?f p(1+‘ H(pt+3)? (4.47)

If we combine (4. 47) with (4.29) and (4.32) and use
(4.46), we recover the result (3.47). For arbi-
trary 2 we numerically evaluate (4.46) for the
charged Bose gas. The results are shown as open
circles in Fig, 1. We see that the two approaches
are consistent.

We noted in Sec. IV B that because the term H,
was omitted in (4. 6) SYK? could not obtain a diver-
gence-free w(k) using standard perturbation theory.
They consequently calculated w(k) in a manner sim-
ilar to that used in this section and obtained a re-
sult in the form (4.45). However they did not in-
clude the O(g) term involving S‘* (&), and hence
their calculation of w(k) is not correct to O(g).

V. CORRELATED-BASIS-FUNCTION APPROACH

The basic assumption of the correlated-basis-
function' (CBF) approach is that the wave functions

v=9]ot,)

are useful in describing the ground state and low-
lying excited states. The correlation factor y in-

(5.1)

Ik —p, pl 6HIK)|2
w(O) (k) _ w(o)(p) _ w(m(l k _§|)

1 &
k)= 5 f (2153
with

& -p,p|6H|K)=

+ (& -p)2S(R)S(p) +p?S(R)S(|K -B|) - (B% +p* -k - P)S(R)S(p)S(|K -p|)],

(K,p, ~K-p|6H|0)=%[S(R)S(p)S(| -

+#2S(|K+p |)S(p) + (R +D)?S(R)S(p) +p3S(| K +p|)S(k) -

31317

cludes the dynamical correlations between the par-
ticles and is chosen to be a symmetrical function
of the coordinates in order to insure the over-all
symmetry of ¥. The two most widely used forms
for  are the Bijl-Dingle-Jastrow (BDJ) form and
the exact ground-state wave function.

A. Excitation spectrum

The BDJ choice of ¥ can be used together with
the variational principle and was used by Lee and
Feenberg'? to calculate the “optimum” but approxi-
mate excitation energy in the form w(k)= w'® (%)
+gw,(k) where

aii)=- 20 [ 48 (1 2

x[1-8(p)][1-S(|k+p|)],

with w‘® (%) given in (3. 13). The optimum structure
function is defined as S(k)=(0lp'(%) p(k)| 0), where
|0) represents the BDJ wave function. The leading
O(g) correction to (5.2) arises from three excita-
tion processes and was calculated by Bhattacharyya
and Woo (BW).? We combine their result with (5. 2)
and write

(5.2)

WP (k) = w, (k) + w,(k) , (5.3)
where
Ik, p, ~k —pI8HI0)|2 5.4)
2,[(21r)3 0B+ 0P (p)+ w0 P (IK+pl)’ '

LS®S(p)S( K -pTV2[K- ®-p)S(p)+p - ®-DP)S(R)+K - pS(|K -B|)-#2S(p)S(|k -p|)

(5.5)

-5 N3 K- (-K - p)s(p)+k pS(|k+p|)+(k+D) pS(k)

(£%+p%+K - DIS(R)S(p)S(| K +D|)] (5.6)

In the above |k, 2') and | %, &', ") are defined as in (4. 35), S(&) is the optimum structure function, and

OH=H-(EIHIE).
4.34)].

For the dilute Bose gas there is the additional contribution ¥%0'/2w‘® (&) in (5. 3) [see

Since we are interested in w,(k) and w,(k) to O(g), we can replace S(k) in (5.3), (5.5), and (5.6) by A,

(8.486).

BW have shown that the resulting integral for w'¥’ (%) agrees numerically for all % up to k=2 with

the field-theoretic result shown in Fig. 1. We show here that the O(g) result (5. 3) agrees analytically for
all & with w'? (%) (4.21) found by collective coordinate method. We write the matrix elements (4. 27) and

(4. 28) in terms of (5.5) and (5. 6):

(& -p, p| Hy| k) =(k -5, p[0H|K) +3 (i)Y 2 [0 ® (B) - 0 ™ (p) - 0 (|K - B)],

<E,§, _E_5|H1l0>:<is§, -

—D[8H|0) = A hzg ) 2 [0 (k) - 0¥ (p) - 0@ (| K +D|)] .

(5.7)

(5.8)
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If we substitute (5.7) and (5. 8) into (4. 25) and com-
pare with (5. 2) and (5.4), we find

wy(B) = w (k) + w, (k) + A(k) , (5.9)
where
AN 5
INUIERS [0 (p) +Pw<'§)(‘|ﬁ_§‘)] . (5.10)

A simple rearrangement of terms in (5. 10) gives
A(k)= - w,(k) and we arrive at the desired result
that

wy (R) + wy(k) = w () + wp(k) . (5.11)

We thus conclude that the O(g) results for the ex-
citation spectrum using the field-theoretic, collec-
tive-coordinate, and correlated-basis-function ap-
proaches are consistent.

B. Static structure function

We discuss here Bhattacharyya and Woo's calcu-
lation of the static structure function. We follow
the approach of Sec. IV C and take the correlation
factor ¥ to be the exact ground-state wave function
10). The excitation spectrum is given in the form
of a correction to the Feynman excitation spectrum:

w(k) = wr (&) + &(k) , (5.12)
where
C V2
w03 2 5 B et = ar (K31
(5.13)
(k- p, p|0H|K) = (& -p,p|H - E|K)
~wp(k)&-p,p|k).  (5.14)

In the above, 6H=H ~ (kK| HIK), HI0)=E|0), and
wp (k) is defined in (4.37). The matrix element
(k -, Bl H - EIK) can be evaluated exactly and has
the form

(& -p, p|H - E|k)=3 "2 [S(R)S(p)S(|k -p[)]

x[k- &-p)s(p)+k-pS(|k-p|)]. (5.15)

The overlap integral (k —p, p/ k) in (5. 14) involves
the three-particle distribution function p® (1, 2, 3),

& -P,p|K)=4g"2[S(R)S(p)S(|k —p|)]/2
x[-2+S(k)+S(p)+S(|K -p|)]

sg [dipettTEE 01, 2, 3) . (5.16)

Since the form of p*(1, 2, 3) is not known, BW fol-
lowed the approach of Jackson and Feenberg!? and
made the convolution approximation®” for p3(1, 2,3)
in (5.16). With this assumption they found that

(5. 16) can be written as

& -p,p|K)=g2[S(R)S(p)S(|K D)2 .  (5.17)
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In (5.15)—(5.17) the S(k) is the exact static struc-
ture function,

Since we need to obtain w(k) to 0(g), we can re-
place wg (k) in (5.13) by »'®(%) (3. 13) and S(%) in
(5.15) and (5. 17) by X, (3.46). We use (4.45) to
write wg (%) to O(g) and write (5, 12) to O(g) as

w(k) = £2/250 (k) + g &,(k) + g[ - K2V (£)/25? ()?] .

(5.18)
We have included the factor of g with €,. We now
compare the O(g) terms in (5. 18) with the O(g)
terms in (5. 3) and determine S‘¥ (k). We find

ZS(O) (k)z
R w, (k) + w, (k) = &(R)] *

SV (k)= - (5.19)
BW evaluated (5. 19) numerically for the charged
Bose gas. Their result is shown as the dotted line
in Fig. 2 and is seen to be inconsistent with the
results (3.4%7) and (4. 46) for S (2) obtained by both
field-theoretic and collective-coordinate ap-
proaches. To find the source of the error in (5.19)
we note that the error does not arise from our
form for w,(k) +w,(k), since it was shown in Sec.

V B that w,()+ w,(k) gives the correct result for
oM (k). If we use (4.46), (5.11), and (5.19) we

see that the error in (5.19) must arise from €,(%).
A comparison of (4.38) and (5.13) and (4, 41) and
(5. 15) shows that €,(2) and €,(%) have the same
form and that the matrix elements (4.41) and

(5. 15) are identical to first order in g. However,
we see that the overlap matrix elements (4.42) and
(5. 17) are not equivalent. Therefore we conclude
that the convolution approximation, which leads us
from the exact form (5. 16) to the approximate form
(5.17), leads to incorrect results to O(g) and that
the correct form to O(g) of the overlap matrix ele-
ment is given in (4. 42).

VI. DISCUSSION

We first summarize the results of the three in-
dependent approaches of Secs. III-V. The results
for the first-order excitation spectrum w‘® (%) ob-
tained in the field-theoretic, collective-coordinate,
and correlated-basis-function (with the choice of
the Bijl-Dingle-Jastrow form of the correlation
factor) formalisms were shown to be consistent
with one another. The % dependence of w‘? (k) for
the charged Bose gas is shown in Fig. 1. It was
shown that in the limit of small 2, w‘¥ (%) is an
analytic function of % through at least order %® for
the charged Bose gas in contrast to the nonanalytic
behavior of w¥ (k) for the dilute Bose gas. The
analyticity of w'¥ (%) for the charged Bose gas can
be associated with the fact that the denominator
w9 (k) - 09 (p) - (15 -Kkl), which appears in
various integrals for w‘¥ (k) [see for example
(3.21)], does not vanish in the limit of small % for



the charged Bose gas as it does for the dilute Bose gas.

The dielectric-function approach allowed us to
isolate the backflow and continuum contributions to
the first-order static structure function S’ (). It
was found that for the charged Bose gas the lead-
ing k* dependence of both the backflow and contin-
uum contributions to S’ (k) lead to the breakdown
of the single excitation Feynman relation S(k) = #?/
2mw(k) at order k* in contrast to the dilute Bose
gas® for which leading & dependence of the backflow
and continuum contributions is order #* and £%, re-
spectively. Recently Wong®® has presented simple
sum-rule arguments for the leading # dependence
of the backflow contribution to the static structure
function of neutral and charged quantum liquids.
Our microscopic calculation is consistent with his
general conclusions. The % dependence of SV (&)
for the charged Bose gas obtained by both the di-
electric-function and collective-coordinate ap-
proaches is shown in Fig. 2, The dielectric-func-
tion approach also allows us to determine the form
of thefirst-order dynamic structure function
S (k, w). It was found that for the charged Bose
gas S« B*w™1/2 in the limit of high frequencies.
We conjecture that this limiting form is indepen-
dent of perturbation theory.

The present study of simple models of Bose sys-
tems using the field-theoretic, collective-coordi-
nate, and correlated-basis-function formalisms
has given us some insight into the assumptions that
have been used by various workers in applying the
latter two formalisms to superfluid *He. A com-
parison of the work of Sunakawa, Yamasaki, and
Kebukawa? with the model collective-coordinate
calculation of Sec. IV shows that they neglected a
term that is the same order of magnitude as the
terms they considered. Thus, the fact that their
calculated excitation spectrum is consistent with
experiment appears to be dependent on their use of
an effective potential with three parameters,

We were able to exploit the flexibility of the col-
lective -coordinate formalism and calculate S ()
in an analagous manner to the correlated-basis-
function approach of Bhattacharyya and Woo. S It
was shown that their result for S*¥ () is incomplete
to first order in g and that the source of the error
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is the use of the convolution approximation® for the
three-particle distribution function in the evalua-
tion of the overlap integral (k -, plk) [see (5. 16)].
A comparison of the two calculations leads us to
propose the form (4., 42) for the overlap integral,
The incorrect form (5.17) for the overlap integral
was used by Jackson and Feenberg® in their calcu-
lation of the excitation spectrum of superfluid *He,
It would be desirable to perform their calculation
using the form (4.42) for the overlap integral with
X, replaced by experimental S(%).

Berdahl! has obtained the correct form (4.42)
for the overlap integral by a functional differentia-
tion of the ground-state energy. The advantage of
the present approach is that it follows closely the
original calculations of Jackson and Feenberg® and
Bhattacharyya and Woo® and allows us to obtain the
correct form of the overlap integral directly.
Grest and Rajopal'? have used the Bogoliubov-
Zubarev® method to determine S™'(k),

The application of the collective-coordinate and
correlated-basis-function approaches to superfluid
*He have been limited to zero temperature. Since
the temperature dependence of w(k) and S(k) is of
interest, it would be desirable to extend the pres-
ent model calculations of w‘* () and S‘*’ (%) to non-
zero temperature so that we will have a guide to
more realistic calculations. Also, since the first-
order investigations have uncovered unexpected
physical features, it would be of interest to con-
sider a model calculation in which four-phonon
processes are included.

Note added in proof. One of the authors (F.F,)
has recently used a different field-theoretic ap-
proach to consider the high-frequency behavior of
S(k, w) for quantum fluids,'® and finds his results
for the Bose system to agree with that of Sec. IIIC.
He has also shown that the divergence of the fifth
frequency moment for a charged Bose gas, which
is implied by (3.41), to be independent of perturba-
tion theory.
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