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We generalize the fully renormalized kinetic-theory formalism of Mazenko te normal quantum fluids and
show that the Kubo linear-response function satisfies a generalized kinetic equation with a memory function
or kernel nonlocal in space and time. In contrast to classical systems, the generalized kinetic equations must
be supplemented by a “boundary-’condition" equation for the static part of the response function. The
memory function is separated in a natural way into a static and dynamic part; only the static part appears in
the boundary-condition equation. We consider a normal Fermi liquid at low temperatures and obtain the
correspondence, in the limit of small wave vector k and small frequency w, between the formal expressions
for the memory function and the phenomenological Landau theory. From this analysis and the use of kinetic
modeling we develop a simple model for the memory function which is applicable to higher k and w, includes
collisional effects, and is consistent with the conservation laws. The dynamic-structure function S(k,w) is
obtained from the generalized kinetic equation and evaluated for liquid *He at low temperatures using the
effective mass, the static-structure function, and the viscosity as input. The model results for S(k,w) and
the dispersion relation of zero sound contain no free parameters and are consistent with recent inelastic-
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neutron-scattering measurements on liquid *He.

I. INTRODUCTION

Recent experiments in normal liquid *He and the
continued strong interest in superfluid 3He give
new impetus to the development of a microscopic
theory of the dynamical properties of a normal
Fermi liquid. In this paper, we focus our atten-
tion on the inelastic neutron scattering experi-
ments on liquid *He performed at Grenoble' and
Argonne.? These experiments determine the
dynamic-structure® function S(k, w) at low tempera-
tures for values of the wave vector 2 and frequency
w such that it is unreasonable to expect the phe-
nomenological Landau Fermi liquid theory* to be
applicable. The transverse zero sound measure-
ments® in normal 3He are also of interest, since
they appear to be unexplained by the Landau theo-
ry.

Another motivation for an investigation of the
dynamics of realistic quantum fluids is the success
of recent developments in classical kinetic theory.
For example, the fully renormalized kinetic-the-
ory formalism of Mazenko® has been successful in
explaining the qualitative features of the dynamics
of classical fluids over a wide range of densities,
and has incorporated nonlocal effects in space and
time which can be probed by large momentum and
energy transfer neutron scattering experiments.
In the past, the success of such an investigation of
quantum fluids appeared doubtful when:the dynam-
ics of classical fluids was not well understood.

The main goal of this paper is to develop new

methods for calculating equilibrium averaged
time-dependent correlation functions such as

S(k, w) for normal Fermi liquids at low tempera-
tures. The usual approach to the calculation in
quantum systems consists essentially of establish-
ing a perturbation scheme, usually with the aid of
diagrams, to solve approximately the hierarchy of
equations for the Green’s functions.” In addition to
the technical difficulties associated with the com-
plexity of any nontrivial approximation, this ap-
proach presents the following problems: It is dif-
ficult to insure® that a given approximation is con-
sistent with the conservation laws, sum rules, and
general symmetry considerations; the nature of
the Green’s-function hierarchy is such that it is
difficult to make approximations on the basis of
physical insight, study of known limits, or rela-
tions to phenomenological theories; several time
variables must be introduced in the intermediate
stages of the calculation and then eliminated to ob-
tain the desired result which depends on one time
variable only. The introduction of several time
variables is the most fundamental problem as-
sociated with the Green’s-function method since

it implies that the intrinsically static effects can-
not be separated from the dynamical effects in a
natural way.

These difficulties have restricted the success of
attempts to calculate S(k, w) over a wide range of
k, w, and temperature for realistic quantum sys-
tems. One of us (G.M.),° has been successful in
using a Green’s-function method to establish a low-
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density kinetic equation from which S(k, w) could be
obtained for aill £ and w. The analysis was very
cumbersome even in the high-temperature classi-
cal limit, but it did lead to further work on the
dynamics of classical systems. Kadanoff and
Baym'® have given a Green’s-function method for
obtaining kinetic equations for systems slowly
varying in space and time, but there remains a
need for a quantum kinetic theory valid on all
scales of length and {ime.

Our approach to quantum kinetic theory is based
on the extension to quantum systems of the fully
renormalized kinetic-theory (FRKT) formalism.®
The FRKT formalism has been discussed by
Mazenko'! for quantum and classical systems, and
first applied to quantum systems by Boley and
Smith.}? Although much of the formal development
to be presented in this paper is similar to that of
Boley and Smith, the method of application of the
FRKT will be more similar in spirit to the original
formulation of Mazenko. The advantages of the
FRKT formalism for both classical and quantum
sytems include: the kinetic equation depends on
one time only; renormalization effects are in-
‘cluded in a natural way by the introduction of a
memory function or kernel in the kinetic equation
and by the introduction of an effective two-body
interaction; the conservation laws, sum rules,
and symmetries can be easily related to various
properties of the memory function; the physical
significance of the different terms in the kinetic
equation is usually sufficiently clear so that ap-
proximations can be made with the aid of physical
insight; dynamic effects are separated from in-
trinsically static effects so that the static correla-
tion functions can be included in a systematic way.
However, the development of a successful quantum
kinetic theory is not easy even with these simplifi-
cations. As will be discussed in the following, ap-
proximation procedures for quantum systems are
considerably more difficult than for classical sys-
tems.

In Sec. II, we discuss the general formalism and
introduce the correlation functions of interest. Al-
though it is possible to generalize the FRKT for-
malism to include Bose condensation and pairing,
we do not discuss these cases here. We show in
Sec. III that the Kubo linear response function sat-
isfies a generalized kinetic equation with a memory
function nonlocal in space and time. It is shown
that in contract to classical kinetic theory, the
generalized kinetic -equation must be supplemented
by a “boundary-condition” equation for the static
part of the response function. The memory func-
tion is separated in a natural way into a static and
dynamic part; only the static part of the memory
function appears in the boundary-condition equa-

tion. In Sec. IV, we consider a normal Fermi li-
quid at low temperatures. The correspondence
between the formal expressions for the memory
function and the phenomenological Landau theory
is obtained in the limit of small 2 and w. This
correspondence yields a relation between the
Landau parameters and the microscopic theory
which we believe to be simpler than the usual
Bethe-Salpeter equation approach.’* From this
analysis of the Landau limit and a discussion of
kinetic modeling in the classical limit, we develop
a simple model for the memory function which is
applicable to higher %2 and w, includes collisional
effects, and is consistent with the conservation
laws. The dynamic-structure function S(k, w) is
obtained from the generalized kinetic equation and
is evaluated for liquid *He at low temperature. We

~ conclude in Sec. V with a discussion of our results

and their relation to the neutron scattering experi-
ments,
II. FORMALISM

A. Phase-space operators

The system of interest is a one-component mono-
atomic quantum fluid of mass m particles at tem-
perature T'=(kzB)"! and density n. For simplicity
of notation, we assume a unit volume and neglect
particle spin unless otherwise noted. Classical
kinetic theory is developed in terms of the phase
space densities. For example, the single-particle
phase space density is defined classically by

Fm, =3 0(r=Ry(NS(p~P,(1) ,  (2.1)

where R;, P; are the phase space coordinates of
particle ¢, and the summation includes all par -
ticles. The natural generalization of (2.1) to the
quantum case, for which the position and momen-
tum of a particle cannot be defined simultaneously,
is given by the Wigner operator™

flp, )= (Zm‘ri)'sf d3y e e/n

<P (=37, pr+3v’,t) . (2.2)

In the above,™ ¥(r, #) and ¢' (r, ¢ ) are the Heisenberg
field operators, and satisfy the usual commutation
relations for fermions or bosons.

Multiparticle density operators are defined by'?

fa2...n, t)=f A3y e no T Nyt (. _ Lyt )

Xf(12...n=1, (@, +375,1), (2.3)

where 1= (7, p,), etc. The density operators are

Hermitian and symmetric under interchange of any
pair of particles for both fermions and bosons. All
of the microscopic quantities of interest can be ex-



pressed in terms of the one-particle and two-par-
ticle density operators. For example, the Hamil-
tonian of the system is given by

H:jd1§;inf(1)+»gfd1dzv(12)f(1z), @2.4)

where v(12)=v(|¥, - F,|) is the interparticle poten-
tial,

The equal-time commutation relations of the first
few Wigner operators can be expressed as'?

[£(1),£(2)] = 5(1 - 2)2i
xsin[$4(9,, -9, - 9,, -9, ) A1),

(2.5a)
[ A(1),f(23)] =6(1 —2)2;

x sin[ 37 (‘5’,1 . 5,,1 - 6,1 . 3,)]]‘(13)
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The arrows indicate whether the gradient operators
act to their left or to their right. These operators
are awkward to use; however note that after a
Fourier transform with respect to », an operator
such as e~ ¥7*¥» becomes a momentum displace-
ment operator if it acts on a momentum-dependent
function to its right. We have for any function g(p)

" EVog(p) = g(p+Tik)

It is thus convenient to introduce the spatial
Fourier transformed operators

Fu(P) =f d*re k- ;f(rp‘) , (2.62)

fklkz(p1p2)=f d®r, d¥ry e Trem i Tap(12) | (2.6D)

+0(1 - 3)2 We can rewrite the equal-time commutation rela-
xsin[17(V, - %, - ¥, +V, )] F(12) tions (2.5) in terms of f, and f, , . If we take into
TN T T ) account translational invariance, the commutation
(2.5b) relations of interest include
1
[l 0D, f- (0] =6(p = p) folp ~ TR /2) = fo(p+ 7 R/2)] (2.72)
: 7tk + 2k +R
[fk(l’),fkl,- I3 -kl(pppz)]: 5<p - p2 __2—l>f'k1’kl((p z.bz) -7 ( 1 1) ,P1>
' 7k + 2k+k
'5<p—p2+?l>f-k1yk1(p Le +h 4 1}1’1)
k+k + k-Fk
+5<P ~p1+ 7 3 '1>fk+ kl,-k-kl<‘p2i -n Tl;Pz>
k+k p+p k-Fk
—6<p -Pl_ﬁ P) 1>fk+ kl,-k-k1< 2 L+7 —Z”L)p2>' (2°7b)

Note that the commutation relations (2.5) and (2.7)
are independent of the statistics.

We can write the usual Heisenberg equation of
motion for the Wigner operator in the form

9 .
ALY g, .8)
where L is the Liouville operator

L=@/r)(H, ]. (2.9)

The time dependence of (1, ¢) can be found by a
formal integration of (2.8)

F1, ) =et (1) . (2.10)

The effect of the Liouville operator follows di-
rectly from the commutation relations. It is easy
to show that

L1, )= =L fW, 0 - [dT LD,
(2.11a)

r

where L(1) is the single-particle Liouville opera-
tor

Ly(1)=—ip, * v‘,l/m, (2.12a)

and L(12) is the interaction part of the t\x;o-par-
ticle Liouville operator
L= D 2 sinGAT, - F,) . (2.132)

If we Fourier transform the spatial coordinates,
we obtain

LD L) - p )1y, 0
—L(kk, p) f5, . 5(pb, 1) > (2.11p)
where
Ly(kp)= (k- p)/m , (2.12Db)

and
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Ly(kR',p)==(2/F )o(F’') sinh( 7R+ ¥,) .

Barred indices such as £ in (2.11b) imply an inte-
gration’® over that variable; v{(k) in (2.13b) is the
spatial Fourier transform of v (7).

(2.13b)

B. Correlation functions

The physical quantities of interest can be ex-
pressed as equilibrium averages of the density
operators. For example, the one-particle distribu-
tion function is given by

n(1)=(fQ1)) , (2.14)

where (- + +) denotes the thermal average in the
grand canonical ensemble specified by B and the
chemical potential . Because of translational in-
variance, #(1) becomes simply the momentum dis-
tribution. The normalization condition on n(p) is
@2nm) 3] d3pn(p)=n. For free fermions, n(p) re-
duces to

nO(p)=[eB(p2/2m-u)+1]-1

The pair distribution function g(#) is defined by

(2.15)

nig(r, —1’2)=f da*p,d3p,n(12) , (2.16)
where #(12) = (f(lZ)) . The static-structure function
S(k) can be determined by x-ray scattering mea-
surements,’” and related to g(») by
S(k)—1=n/ drei* i gr)-1] . 2.17)
The linear response and transport properties of
a fluid can be described by time-dependent equilib-
rium averaged correlation functions. For a classi-
cal system, it is natural to study the phase-space
density correlation function

Sc(ll';t_ t,): <6f(17 t)5f(1,; t’)) .

In the quantum case, there are several interesting
two-point correlation functions of the one-particle
Wigner operator. We first define the density fluc-
tuation function, or the phase space dynamical
structure function, as

s/, t-1)=3(l 67, 1), 6/(17, 1)].,) , (2.18)

where [ 6f(1, 1), 6f(1’,#'], denotes the anticommuta-
* tor and 6f=06f(1) - (f(1)). If we Fourier transform
(2.18) with respect to space and time, we obtain

S(k,Pp'; w):f d3(1,1_1,1)e-if;.(;1_;,1)

Xf d(tl - t{)eiw(tl- t1)

-0

xS(17, 1, = 1]). (2.19)

The usual Van Hove function® S(kw) determined by
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inelastic-neutron-scattering experiments (ne-
glecting spin) is related to S(&,pp’, w) by

1Sk, ) fd b a%p’ Sk, pp's 0) ——pre (2.20)

l+e

(The integral over p and p’ of S(k, pp’; w) without the
statistical factor 2/(1+e"#"%) is the “symmetrized”
scattering function.)

The second function of interest is the Kubo re-
sponse function, which describes the response of
the system to the turning off at time ¢ of a weak
perturbation. We define it by

£(11’,t—t’):ﬁ‘1f8 D (SF A, 1)0f,(, D), (2.21)
where -
fX:e-Aer-r)LH .

The relationship of the definition (2.21) to other
equivalent definitions of £ is discussed by Kadanoff
and Martin'® and Mazenko.!! Finally, we can also
define the commutator correlation function or the
generalized susceptibility as

(2.22)

X1, 1= 1) = 5 [ar(, 1), 8/(17,1)]) . (2.23)
It is well known that these three functions are not
independent; the relations betweenthemare con-
veniently expressed in terms of their temporal
Fourier and Laplace transforms. The temporal

Fourier transform of £ is defined as

£ (k, pp’; @) f L (pp'y ), (2.24)

and the temporal Laplace transform is given by

©(e,pp's2)==i [ dtei £(e,pp’0) . (2.25)
o]

The variable w is a real frequency, and the vari-

able z is a complex frequency with Imz>0. The

function S(&, pp’, z) is defined as in Eq. (2.25). The

Laplace and ,Fourier transforms are related by

L (R, pp’; w)==2ImL(z = w+i0*) , (2.26)
or conversely
L(k
£ (k,pp'; 2) = f d —(;e_pw—w) (2.27)

To correspond with common notation, we define the
temporal transforms of y(11/,¢) as

X“(k,PP’;w)=] dteith(kﬁpp,y t) ’ (2-28)
and
X(e, b5 2)= = 2i f dtei® (i, pp’, 1), (2.29)
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The functions S and y’’ are related by the fluctua-
tion-dissipation theorem

S(k,pp’; w)=T7 coth(zprw)x’’ (k, pp’;w) ,  2.31)
and £ and y’’ are related by
3(Bw)L (B, pp’; w)=x""(k,pp"; w) . (2.32)

In the classical limit (%7 —0), the distinction be-
tween £ and S vanishes. We can combine (2.27),
(2.30), and (2.32) to obtain

£ (&, pp’; 2) = (B2)" [ x(k, pp’; 2)= x (%, pp"; 2=0)] .

(2.33)

The exact static properties of the system enter
through the initial value of the time-dependent cor-
relation functions. Momentum-dependent static-
correlation functions will be denoted by a tilda,
e.g., L(k,pp")=L (B, pp’; t=0). The relation

L (k, pp’) = =B~ x (b, pp’; 2=0)

will be useful in the following and is obtained in the
same manner as (2.33).

We shall require in the following the three-point
correlation functions .

(2.34)

£(2;8,1-)=p7 [ dN(of(3, )57, (12,0)
T (2.35)
X(12;3,1-1)= o ([67012,0), 63, 1)]) , (2.36)

and the four-point functions
8
£(12;34, ¢ - t’)=B‘1f {634, 1)6f (12, 1))
o
(2.37)

X(12,34,¢-¢t")= Elﬁ ([ 6f(12, 1), 6£(34,1")]) .
(2.38)

It will also be convenient to define the inverse of
the correlation functions, e.g.,

£°1(11,2)e (12,2)=56(1-2) . (2.39)

III. QUANTUM KINETIC EQUATION

The dynamics of the system can be expressed
in terms of any of the two-point time-dependent
correlation functions discussed in Sec. IB. Since
these correlation functions are related by (2.31)
and (2.32), the choice of correlation function is a
matter of convenience. However, the function y
does not satisfy a simple kinetic equation [ see
(3.20)] and does not have a well-behaved static
inverse at small k.. Boley and Smith'? have con-
sidered the kinetic equation for S and have dis-
cussed a perturbation expansion for its associated
memory function in the weak-coupling approxima-

tion. For reasons which will become clear in the
following, we prefer to formulate our theory in
terms of £ rather than S. The quantity of physical
interest S(k, w) is then obtained from (2.31) and
(2.32). '

We obtain the equation of motion of £(11’; z) by
first considering the equation of motion for y(11’;
z). If we use (2.10) together with the time-transla-
tional invariance of the equilibrium ensemble, we
write (2.29) as

1
x(117;52)= o= ([(z+ L)-18f(1), 6/1")]) . (3.1)
The equation of motion of y(z) can be found by
using the operator identity
(z+L)"t=z"t=z"Yz+ L)L ' (3.2)
to find

X(1152)=3(11) = 5 ([(e+ 1) Lof(D), /(1)) .

(3.3)
We use (2.11a) to determine the result of the
operator L on §f(1) in (3.3) and rewrite (3.3) as

[ 2 - Ly1)]x(11%;2)
- [aTLaTRaT;1752) =301, (3.4)

where x(11;1’; z) is the temporal Laplace trans-
form of (2.36) and x(11’)=x(11’,£=0). The static
function ¥(11’) can be evaluated explicitly from
(2.23) and expressed conveniently in terms of its
spatial Fourier transform. ‘We have

- - 7 7

x(k, pp’) = —ﬁl— 5(p —p')[f(p - ;)—f@n —2"1)} .
(3.5)

From Eq. (3.4), we see that y(11’;z=0)= x(11/;0)

satisfies

—Ly(1)x(11%;0) - [ aTLaT)aT; 17500 =511 .

(3.6)

We obtain the equation of motion of £ by subtrac-
ting (3.6) from (3.4) and use the identity (2.33) to
eliminate x(11’) in favor of £(11’). [ An identity
analogous to (2.33) holds for the three-point func-
tions y(11;1%;2z) and £(11;1’;2).] The result is

[z—Lo(l)]£(11’;z)—f a1L,17)e1T; 1%; 2)

=By (117;0)=£(117) . (3.7)

x(117; 0) serves as the initial condition for the
£(11’; 2) in (3.7) and is determined by (3.6). For
a noninteracting system, the spatial Fourier trans-
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form y(k, pp’; 0) is found from (3.5), (3.6), and
(2.15) to be

=5(p —p")
Xo(k,pp'; 0) = ﬁE" 5/7}’1,

x[n%(p - 1k/2) = n°(p+7k/2)] . (3.8)

The small % limit of (3.8) is

n’(¢)

PR (3.9)

Xolk=0,pp";0)=5(p - p")

where €=p?/2m. The derivative 92°(¢)/3¢ be-
comes the familiar & function of energy at the
Fermi surface in the limit of zero temperature.

The equation of motion (3.7) relates the two-point
function £(11’; z) to the three-point function
£(11;1’; z) and is the first of a hierarchy of cor-
relation function equations. This hierarchy is
similar in form to the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy'® of equa-
tions familiar from classical nonequilibrium sta-
tistical mechanics. We expect that since £ is the
linear response to an adiabatic external perturba-
tion, £ has a resonant structure. It is now well
known that it is desirable to consider instead a
function that describes the location and width of
the resonant structure. Since the location and
width are more slowly varying functions of wave
vector and frequency, they should be more amena-
ble to approximation than the correlation function
itself. We expect that the phase-space memory
function or generalized collision integral ¢ de-
fined by the generalized kinetic equation

[z-L,(1)]£(11;2) —f d§¢(1§;z)£(§1’;z)::8(11')

(3.10)

controls the location and width of the resonant
structure of £. The memory function has the
physical interpretation of a nonlocal, non-Marko-
vian external source modifying the propagation of
a single free-streaming particle described by
z—=Ly(1).

The major problem in kinetic theory then be-
comes the development of useful calculational pro-
cedures for ¢. A comparison of (3.10) and (3.7)
shows that the memory function satisfies

de »(17; z)£(T1';z):deLI(IT)Ji(lT;1';2). (3.11)

Equation (3.11) is not a convenient expression for
¢ since it involves the unknown function £(11/; z),
and since the right-hand side is not symmetrical
in the interaction operator L;. A more convenient
form can be found by using the adjoint equation to
(3.7)

[2+Lo(17)]£(117; 2) + deLI(lT)Ji(l; 1'7; 2)

= B (11;0) , (3.12)

and the equation of motion for the three-point
function £(117; 2; z)

[2+Ly(2)]£(117;2;2) + deLI(zi);z(u'; 23; 2)

=-p"1y(11’;2;0) . (3.13)

We apply the operator [z+ Ly(1")] to both sides of
(3.11) and use (3.12) and (3.13) to obtain

o(11; 2)[ =B~ % (11750) - Ly (172)£(T;172; 2)]
=L,A1)[-p~*x(11;1/;0) - L,(1'2)L(11;1'2; 2)] .
(3.14)

(Repeated barred indices such as 1 in (3.14) imply
an integration®® over that variable.) An inspection
of (3.14) shows that ¢ separates naturally into two
parts

¢(1T; 2)x(117;0)= ¢ (11)x(11’; 0)

+¢'9(11; 2)x (117;0), (3.15)

where the static (z-independent) part is given by

(T )x(117;,0)= L, (1 Dx(11;17;0) , (3.16)

and the collisional part is given by
(11 )y (117;0)
=_ded§LI(1T)LI(1'§)
x[£(171;1'2; 2)
—£.(1_1; 3; z)£'1(—.‘§z; 2)&(4; 1’5; 2)] .

(3.17)

The formal expressions (3.16) and (3.17) for ¢'s’
and ¢'® are identical in structure to the analogous
expressions for classical systems. However (3.16)
and (3.17) are integral equations for ¢‘s’ and ¢,
respectively, because of the presence of x(11’;0)
(and the implied integration) on the left-hand side.
It is one of the major simplifications of classical
systems that the momentum dependence of static
correlation functions such as £(11’)=p"1x(11’;0)
is known, and thus ¢‘®” and ¢‘¢’ can be solved for
explicitly.

Note that the form of ¢’ as given in (3.16) oc-
curs naturally in’(3.6) for x(11’;0). We can re-
write our generalized kinetic equation (3.10) in
terms of the static and dynamic parts of the
memory function as
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<z - k_m"P'> Lk, pp’; 2) = ¢k, pP VL (R, pp’; 2)

- ¢k, pp; 2)L(k, pp’; 2)
=B 1x(k, pp";0) , (3.18)

where only the static part of the memory function
appears in the boundary condition for x (%, pp’;0)

£p
m

x(k, pp'; 0)+ ¢S (%, pp Ix (&, pp’; 0)

1
=5 0 =LA (p~1k/2) - f(p+TiR/2)] .

(3.19)
The first term in (3.18) represents free particle
streaming. The physical interpretation of ¢S’
and ¢‘° in (3.18) is the same as in classical
kinetic theory, that is, ¢‘s’ corresponds to a
mean-field or generalized random-phase term
and ¢‘° represents the dynamical effects of colli-
sions.

The form of (3.19) is convenient since it relates
the two-point static functions x(&, pp’; 0) and
¢S (B, pp’) to the one-particle function f(p) which
has a simple physical interpretation and which in
principle can be measured experimentally. Boley
and Smith' have shown that S(%, pp’; z) also satis-
fies a generalized kinetic equation of the same
form as (3.18). However, the analogous condition
to (3.19) involves the static part of the memory
function of S(&, pp’; z) and the two-point function
Sk, pp”)=S(k, pp’, t=0). Little is known from theo-
retical considerations about the behavior of
S(k, pp’), nor can it be measured experimentally.
We shall see in Sec. IV that the relatively simple
form of (3.19) will allow us to adopt a simple phe-
nomenological model for ¢ and y.

In contrast to £ and S, the generalized sus-
ceptibility y does not satisfy an equation of the
form (3.18). If we substitute the relation (2.33)
into (3.18), we find that y satisfies the equation

(z - -k—m2> Xk, pp’; 2) — ¢ (&, pp Yx (%, pP"; 2)
- (&, pp; 2)[ x (%, pp’; 2) = x (%, pp"; 0)]
= 2L 6(p ~ ") Ap = k/2) (p+ R /2)] .

(3.20)

It is clear that the form of (3.20) is less convenient
than (3.19).

Our problem of calculating £(z) has now been
shifted to calculating ¢, ¢‘©), and f(p), from
which £ and S(%, w) can be found. The motivation
for this reformulation is the expectation that the
results for £ and S should be relatively insensitive

to the approximations made for ¢, ¢‘©, and f(p).
For example, if we set ¢''=¢ ‘=0 and replace
f(p) with its free-particle value, we easily obtain
the free-particle forms for £(z) and x(z=0) [ see
(3.8)]. In general, the % and z dependence of the
memory function should be slowly varying and can
thus be simply parametrized. In the following
section, we develop the correspondence between
our formalism and the existing phenomenological
theory of normal Fermi liquids in order to identify
the important parameters characterizing ¢‘¢’ and
¢°’, and to appraise the usefulness of the for-
malism. The next step in a complete theory is to
carry cut microscopic calculations for ¢‘s’ and
¢, It is possible to perform a direct perturba-
tion expansion in the potential for ¢', ¢‘¢’, and
f(p) similar to that given by Boley and Smith.'
However for realistic potentials, i.e., adequate to
represent helium, such a perturbation expansion is
not adequate. We know that in classical kinetic
theory, density expansions of ¢‘®’ provide a satis-
factory alternative to perturbation theory, and that
it is possible to obtain at least the qualitative be-
havior for strongly interacting systems. Unfor-
tunately, a simple density expansion for ¢‘¢ in the
quantum case does not conveniently preserve the
statistics. We hope to discuss in future work a
new microscopic method which reduces to the
usual density expansion at high temperatures and
which preserves the quantum statistics at low tem-
peratures. Such a method should be capable of
giving realistic approximations for ¢‘*’, ¢ ‘¢, and
f(p) for strongly interacting systems.

IV. THE PHENOMENOLOGICAL THEORY

In lieu of a sophisticated microscopic analysis
of the properties of the memory function of liquid
*He, we present a simple phenomenological model
of the memory function which is applicable to lig-
uid ®*He at low temperatures. As pointed out in
Sec. III, one of the advantages of the present for-
mulation in terms of &£ is the comparative ease
with which it is possible to relate the formal ex-~
pressions to those of phenomenological theories.
QOur approach is to relate the formal expressions
(3.16) and (3.17) for ¢ and ¢, respectively, to
the analogous small £ and w results of Landau’s
theory of a normal Fermi liquid. Higher % and w
effects in ¢rare included by using the method of
kinetic modeling® developed in classical kinetic
theory.

We first investigate ¢’ and the associated func-
tion x(z=0) in the low temperature, small wave-
number limit. In this limit (and in general the lim-
it of small frequency), normal liquid *He is rep-
resented in the Landau theory as a dilute gas of
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quasiparticles with an effective mass m* different
from the “bare” mass m of an individual *He atom.
The equilibrium one-particle distribution function
f(p) takes the form

f(i)) - [es(e(p)-u)+ 1]-1 , (4.1)

with €(p)=p?/2m*. An inspection of (3.19) shows

that for the particles to acquire a mass m*, ¢’

must be of the form (setting %Z=1 for convenience)
ip

¢ =08(p -p") S (4.2)

in the limit of small k. It is easy to see that m* is
related to the constant m’ by

1 1 1
m:%‘f—w. (4.3)

An analysis® of the formal expression (3.16) for

¢ ‘) shows that ¢ ‘) does have the form. (4.2) for
small 2. A discussion of the microscopic calcu-
lation of m’ will be postponed to future work. We
take m* as an input parameter and rewrite (3.19)
in terms of m*, the approximate one-particle dis-
tribution function given by (4.1), and ¢ *’. The re-
sult is

X(k, pp’; 0)+ ¢ Ok, pP)X(k, Bp"; 0) = Fy(p)d(p - p")

(4.4)
where
Fk(p)=g—g-[f( -3k) -f(p+3R)], (4.5)
and
B, pp) =22 5 [6 90, ") — 6 pp")]
(4.6)

A determination of the form of ¢’ also deter-
mines the form of x(%, pp’;0). In order to see ex-
plicitly the relation between ¢ ¢’ and X, and to
understand the relation of (4.4) to the Landau theo-
ry, we consider the =0 limit of ¢‘’ and x and
write

$N=0,pp") =N 37 FiFo(p)Yin(D) V1)
im
(4.7
and
x(k=0,pp";0)= D" %, Fy(p)
Im

XFo(p) YD) Y1,(P7) . (4.8)

The Y,,, are the usual spherical harmonics; N(0)
is the density of states at the Fermi surface and
is given by

N(0)= 3 Folp).
b

. The spin z of the *He atoms is taken into account

by interpreting Z} to implicitly include a sum over
spin. At T=0, Fo(p) = -8f(€)/0e=08(p%/2m — ),

and N(0)=m pF/ﬂ . We substitute (4.7) and (4.8)
into the =0 limit of (4.4) and use the addition
theorem for spherical harmonics to find

=N(0)[1+ F,/(21+1)]™. (4.9)

The relation (4.9) becomes familiar if we identify
F, with the expansion coefficients F,‘S) of f pps
where f,,, is the quasiparticle interaction energy*
of the Landau theory.

Since the spin-orbit coupling in liquid *He is ex-
tremely small, we can develop our Kkinetic theory
for the density and spin parts of the various cor-
relation functions separately, and in an obviously
analogous way. In particular, we can obtain equa-
tions for the spin part of the generalized suscep-
tibility similar to (4.4) and (4.9). In order to avoid
repetition we will continue to develop the theory
for the density part only, and indicate only some
of the results for the spin part. We shall see that
the density part is more interesting, since it ex-
hibits a collective mode. _

We have seen that in the small % limit, ¢’ and
x(0) reduce to a simple form in terms of the Lan-
dau parameters. We wish to investigate the form
of $<s) for arbitrary % by considering its matrix
representation.?® In order to gain insight into the
properties of its matrix elements, we consider
first the parametrization of ¢'? in the classical
case. We introduce a set of basis functions ¥;(p)
that satisfy the orthogonality and completeness
conditions

[ @ o) =545, (.10
SR WP) = 8(p —p7) (4.11)

where W(p) is a weight function. In the classical
case W(p) is taken to be the Boltzmann distribution
function (2173/m)'3/2e"‘”’2/2’". The memory function
¢ is written in the matrix representation

Zzﬂ(p

¢k, pp'; 2) YW(p) Sk, 2)

(4.12)

~where the matrix elements ¢ 5(k,z) are defined

by
(c)k Z Jdapdsp W(p)
X, (p); (0" Nk, pp’32) . (4.13)

The functions ,(p) are ordered such that the first
five functions are proportional to the five hydro-



dynamical functions corresponding to conserva-
tion of particles, momentum, and energy. The
matrix elements ¢,5§’ for i,j<5 are qualitatively
different from the remaining matrix elements and
vanish as %2 and z go to zero. If7 and j are not in
the hydrodynamical set, ¢ (k,z) is approximately
diagonal in{ and j and ¢ $'(k, z) varies slowly with
increasing i. These properties of d)g) are included
in the systematic approximation scheme of kinetic
modeling.

The static part of the memory function can also
be expanded in terms of its matrix elements. How-
ever in the classical case® the form of ¢’ can be
solved for explicitly, ¢ Xk, pp") = —(k-p/m)

x C,(k)W(p), and only one matrix element of ¢ ‘s
enters. [C,(k) is the direct correlation function. ]
Since we cannot explicitly solve the integral equa-
tion (3.16) for ¢ ¢’ in the quantum case, we write
¢, pp") =3 PilPI (PGP (RIF(D) . (4.14)

ij

We have chosen the weight function in (4.14) to be
the Fermi factor F,(p) given by (4.5). The func-
tions ¥;(p) now depend weakly on k, satisfy (4.10)
and (4.11) with W(p)=F,(p), and reduce to the hy-
drodynamic functions in the limit 2=0. The hydro-
dynamic functions are

¢.=1, ¢,=p,=pcosb
$3,4= D,y (ps:pz/ZM*—“’

and those corresponding to their currents are

(4.152)

2

¢6,7,s= <2_‘f-n7 - “)px'y,z s

¢)9=p§, (pm:pi_pi,

G11=DxPys Pr2,13= D,y Pz - (4.15Db)

The z axis is taken along k. The functions ¢; are
not all mutually orthogonal, but each member of
the longitudinal subset {¢,, ¢, G5, Ggr Po ...t

is orthogonal to each of the remaining functions.
Because of the spherical symmetry of the system,
only the matrix elements corresponding to the
longitudinal subset will enter directly into (4.14).
The functions {¢,, ¢,, ¢s, ¢s, ¢ ..} are not orth-
ogonal to each other but in the limit 2= 0 the func-
tions {¢,, ¢z, b5, b5, 3¢g—¢,...}are. The ex-
plicit form of the properly normalized basis func-
tions ¢; through 7=5 is given in the Appendix. Only
the explicit forms of ¥, and ¥, are of interest here.
We have ’

$,(p) = [N(ON, (%) ]2,
Do(p) = [3/N(0)* Ap/p ) cosb ,

(4.16)
(4.17)

where

18 KINETIC-THEORY APPROACH TO NORMAL FERMI LIQUIDS 271

l+x
1-x%

1 1-x2
Nl(x)=§(1+ —Z—;—In

), (4.18)

and x=%/2p,. It is easy to see that up to a nor-
malization factor ¢, and ¥, correspond to the [ =0
and /=1 Legendre polynomials in (4.7)

If we also write y as in (4.14), we can solve for
the matrix elements x;; in terms of ¢} by using
(4.4). We construct an approximation of order N
by truncating the basis set {¢;} at i=N, multiply
(4.4) by ¥,(p);(p), use the orthonormality property

(4.10), and obtain a set of 2N equations for ¢}’ and
Xij- As an example, we take
¢k, pb") = [ D52 (R)Y1(P)I1 (p")
+ o5 (R (PWL(P)] Fo(p)  (4.19)

and obtain the following nonzero matrix elements
X11(R) =N(O)[1+ q—bif)(k)] -,
Xzz(k) =N@O)[ 1+ 74)§§)(k)] "t

The approximate form (4.19) for ¢'s’ is applicable
to all £ and is in terms of two as yet undetermined
parameters. Although it is possible in principle to
determine ¢!’ and ¢’ microscopically, we shall
discuss in the following how they can be determined
from the first two sum rules for S(k, w). In order
to make contact with the Landau theory, we re-
write (4.19) as

O, pp")=[ (k) + BER) (B B)B ~B)/p2]Fo(p)
(4.21)

where p is the Fermi momentum and % denotes a
unit vector. In the limit 2=0, @ and B can be identi-
fied with the Landau parameters [ see (4.7) and

(4.9)].
a()=Fg BO)=F].

(4.20)

(4.22)

We now turn to the modeling of the collisional
part of the memory function ¢‘°’ and write ¢° as
in (4.12) with W(p)=F,(p). We can model ¢‘° by
incorporating what we know from the discussion of
kinetic modeling in the classical case and from a
discussion of the Landau limit #-0, w/v-0,

T -0 of the collision kernel (v is the Fermi veloc-
ity). A realistic approximation for ¢‘¢’ must be
consistent with the conservation laws, i.e.,
);¢.-(p)¢<“ (k=0,pp’;2=0)=0, (4.23)
for ¢=1 through 5. We consider the limit % and z
small so that the diagonal matrix elements for i=5
can be neglected and assume that as in the classi-
cal case the off-diagonal matrix elements are
small compared to the diagonal matrix elements.
If we also approximate the diagonal matrix ele-
ments for ¢>5 by —i7"1, we can use (4.11) to write
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¢‘° for small % and z as

'k, pp”; 2)= —iT [ 8(p - p’)

- Z V(Y (P F(P)] .
= (4.24)

Equation (4.24) is the simplest approximation to
¢! that we can obtain by analogy to the classical
case which satisfies (4.23). Note that the form of
(4.24) differs from what would have been found
from simple truncation of (4.12). The nonhydro-
dynamic (i>5) diagonal matrix elements have been
written with the factor of —i in order that the trans-
port coefficients be real and positive.

We can gain further insight into the approximate
form of ¢ from the Landau® form of the colli-
sion kernel. It is easy to see that (4.24) is identi-
cal to what would have been found by calculating the
matrix elements of the Landau collision kernel di-
rectly, if we identify 7 with the matrix element?*
associated with the shear viscosity 1. The simple
relation between 1 and 7 obtained in Ref. 4, within
the Landau theory, is

=1mm* 03T . (4.25)

The relaxation time 7 is proportional to 7 -2 and
can be expressed in terms of the Landau param-
eters. We adopt an alternative approach and use
(4.25) to determine 7 from the experimental®®
values of 7.

A study of the Landau limit of ¢‘¢’ also implies
that the terms i=3,4,5 can be neglected in (4.24).
The term =5 associated with energy conserva-
tion can be neglected since at low temperature the

_J

—-B"*N(0)

thermal diffusivity mode makes a negligible'® con-
tribution to S(k, w) in the hydrodynamic limit. The

_ transverse momentum terms i, and ¥, can also be

neglected since they will not enter into the calcula-
tion of a longitudinal correlation function.

Because of the hard-core nature of the *He inter-
particle interaction, we expect that the k and z depen-
dence of ¢‘®’ is small. We thus take our low-tem-
perature approximation for ¢’ to be

¢k, pp’; 2)= =T [8(p ~p”)
- ,22 3 (OI (P L(D)]

i=1,
(4.26)
where 7T is given by (4.25).
We now turn our attention to the dynamical equa-
tion (3.18) for £ which we rewrite in terms of ¢'s
and m* as

->

k-p KD _ — -
<Z - > L0, pp'5 2) = ——2 ' (&, b5 )k, B 2)

- &, pp; 2)L(k, pp’; 2) = =B x (&, pp’; 0) .
(4.27)

The solution of (4.27) with (4.21) for ¢'*’ and (4.26)
for ¢‘® can be found by dividing both sides by
(z+K+B/m*+i7"'), multiplying both sides by

(P (") or $1(p)h,(p’), and then integrating
over p and p’. We obtain a set of two equations and
two unknowns which we solve for

n&(k, 2) =f aspd3p’ Sk, pp’; 2) , (4.28)

where £(k, z) is essentially the 1,1 matrix element
of £(k,pp’;z). The result is

[AL (1= BAy, =75 AS,) AL (BA, + T A L))

Lk z)=( ) -
’ 1+aN, [(1 —aAy; ~ T INTIAL (L - By =T AL,) = (BN, + iTs_lAfz)(aAlz +iT _lelAiz)] ’

The functions A;; and Aj; are given by

D (PY;(P)WN N /2F (p)K - p/m*

Z—kep/m*

Ay, z)=f asp

and

B OW DY, N ) 2Fy(p)

’ _ 3
Aij(k,z)"fdp Z—E'ﬁ/m*

b

(4.29)

(4.30)

(4.31)

where N, is given by (4.18), N,=3, and Z=2z+47"'. It is easy to express A;; and Aj; in terms of A}, which
can be evaluated analytically at 7=0. The result is (7 evaluated at 7'#0)

1 1
AR, 2)=- §+ % I:pF - kZpF/m*z

(§+k2/2m*)2} <z"+k2/2m*-—ka/m*>
n Z+ 2 /2m* + kp pfm*

(4.32)

kzpF/m *2

(Z — k%/2m*)? ] ln(é — E2/2m* ~ kp o/ m*
- Z—F/2m* + kp p/m* > ’
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where the symbol In stands for the complex log
function and the principal value is understood.

The desired result for S(k,w) in terms of the
parameters a(k) and B(k) can be obtained from
(2.20), (2.26), (2.31), (2.32), and (4.32). The func-
tions a(k) and B(k) can be specified by requiring
that S(k, w) satisfy the sum rules

490 5k, w)=S(k) , (4.33)

=00

and

o 2
L g—:wS(k,whg;l, (4.34)
where S(k) is defined by (2.17). We use the mea-
sured values of S(¢) at T~ 0.4 K in the range 0.15
<k=2.1 A", perform the integrals overw in (4.33)
and (4.34) numerically, and determine @ and 8 so
that the two sum rules are satisfied. The results
for o and B are shown in Fig. 1. Since the mea-
sured S(k) is a slowly varying function of 7T in the
range of & of interest, the values of a and 8 shown
in Fig. 1 are essentially at T7=0. Note that g(k) is
a slowly varying function of k2. If we extrapolate
the values of @ and B determined by the above pro-
cedure to =0, we see that @ and B appear to ap-
proach their limiting values Fj and F}, respective-
ly, given by the Landau theory [see (4.22)]. This
agreement with the measured®® values, F5=10.07
and F;=6.04, determined from the compressibility
and the specific heat, implies that our dynamical
approximations are consistent with the statics of
the system.

If we use the values for o and 8 shown in Fig. 1,
our form for S(k,w), the density fluctuation part
of the dynamic-structure function, coincides in the
Landau limit of 2~ 0, w/v k-0, and T~ 0 with

T T T 1T 1T 1
25— T
20 |— 1
alk) - /, N 8 e B
o= \\a —4
S —e
| 1

I [
02 04 06 08 1.(?) 12 14
k(A

FIG. 1. Parameters a and g as functions of 2. Notice
that at small & their numerical values coincide with those
of the Landau parameters F§ and F§.

that found from the phenomenological Landau theo-
ry. At higher values of 2 and w, the k£ and w de-
pendence of S(k,w) is more complicated than the
Landau theory and arises from the functions A,,,
a(k), and B(k). Because we have included the ef-
fects of quasiparticle collisions in ¢‘®, our ex-
pression for S(k,w) is different in nature than
those given by a generalized random-phase approx-
imation.?*2¢ The effect of quasiparticle collisions
becomes important for nonzero T since the relaxa-
tion time 7 given by (4.25) varies as T? for low 7.
Temperature effects associated with A, are negli-
gible. '

The scattering of neutrons from liquid *He de-
pends on whether the neutron and the nucleus form
an intermediate state which is either a triplet or a
singlet state. Since the scattering lengths associ-
ated with these two intermediate states are differ-
ent, the differential cross section for unpolarized
neutrons is proportional® to

S(k,w)=S(k,w)+(0,/0,)Sk,w) (4.35)

where S;(k,w) is the incoherent part (due to spin
density fluctuations) of the total dynamic-structure
function 8(k,w); 0, and o, are the incoherent and
coherent cross sections, respectively. The analysis
of Ref. 2 shows that 0;0.250,. We can model
S;(k,w) in the same spirit as was done for S(k, w).
Since S,(k, w) is not expected to show a resonant
structure, we adopt a simpler form. We choose a
one-parameter model analogous to (4.21) for the
static part of the memory function of S;(k,w) with
a(k) replaced by Z(k) and B(k) replaced by zero.
The parameter Z(k) reduces to the Landau value®
Z,=-2.69 at k=0. The spin current density is not
conserved so S;(k,w) obeys only the zero moment
sum rule analogous to (4.33) with S(k) replaced by
S;(k), the spin static-structure function. S;(k) was
indirectly determined in Ref. 2 and found to be
given by the limiting value of unity for 0.8 A<k
<1.5 A"', This behavior of S,(k) implies that Z (k)
goes to zero in this range of k.

The w dependence of S(k,w) and Sy(k,w) at T
=0.015 K and k=1.4 A is given in Fig. 2. There
is a small broad peak in S(k, w) (the solid line)
produced by the single-particle excitations. The
smallness of this peak is due to the fact a(k) is
large in this range of 2. The most striking feature
of S(k,w) is the sharp peak at higher w which we
identify as the zero-sound resonance. This identi-
fication is confirmed by looking at the small %
limit of S(k,w). The dotted line in Fig. 2 is S;(k, w)
which dominates the behavior of 8(%, w) for w<1meV.
The theoretical dispersion relation wy(k) of the
zero-sound peak is shown in Fig. 3. It is seen
to be linear for small & and then rise to a plateau
for larger k.
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T I
N k=14 &'

S(K w)(mev™)

05 \ —

w (meV)

FIG. 2. Total neutron scattering function as given by
the theory of this paper for T=0.015 K and 2=1.4 A™.,
The solid line is the density part S(¢2,w) and the dashed
line is the spin part Sk, w) multiplied by 0.25. The
sharp peak on the right is identified as the zero-sound

mode.

V. DISCUSSION

The neutron scattering measurements of the
dynamic-structure function of liquid *He performed
at Argonne® at 7=0.015 K are consistent with our
theoretical results. Previous experiments' at T
=0.63 K did not indicate the existence of the zero-
sound mode. A generalized random-phase approx-
imation®” based on a modification of the sum rule
for the multiparticle-hole part of 8(k, w) has
been proposed to account for the observed tem-
perature dependence of the width of the zero-sound
mode. In the kinetic-theory analysis presented
here, the temperature dependence of the width of

T T T T T ],
21— x X |
X
X
= T
£ M o,6 00 0 6
31— 5 ]
X
X
N S SN N NN O
02 04 06 08 10 1.2 14 16
0.
k(&)

FIG. 3. Dispersion relation for the zero-sound mode.
The circles are the experimental points of Ref. 2, and
the crosses our theoretical values. The straight line is
an extrapolation of the linear dispersion relation pre-
vailing at very small k&.

the zero-sound mode arises from the 7?2 depen-
dence of the quasiparticle collision time®®; according
to our theory the width of the zero-sound mode in-
creases by a factor of approximately 10° as T in-
creases from 0.015 to 0.63 K. The temperature-
dependent statistical factors in A;; contribute an
additional but small broadening of the zero-sound
mode. The quasiparticle collisions are neglected
in the random-phase approximation.

Our theoretical results for the zero-sound dis-

persion curve w (k) are compared to the experi-
mental results in Fig. 3 and are seen to be in qual-
itative agreement with experiment but to lie above
the experimental curve.?® The qualitative compar-
ison of our theoretical values for w (k) with the ex-
perimental values is reminiscent of the results of
the Feynman theory®® for the phonon dispersion
curve in liquid *He. The reason for the lack of
quantitative agreement of the theoretical w,(k) with
experiment is our simplified treatment of the colli-
sional part of the memory function for which we
have neglected higher-frequency effects and the
effects of mode-mode coupling. The latter effect
is particularly important since the phase space for
zero-sound-zero-sound coupling is appreciable due
to the flatness of the zero-sound dispersion curve
between 0.8 and 1.4 A™', This mode-mode coupling
should give rise to a secondary peak in S(k, w) at
w=2w, There is experimental evidence® for this
secondary peak. It is easy to see that the inclusion
of extra weight in S(%, w) at higher w would lead to
lower values of @ and B, and thus w (k) for a given
k. We hope to investigate the effects of mode-mode
coupling in future work.

We have seen that it is possible to develop a
simple phenomenological model of the dynamic-
structure function S(k, w) of liquid *He based on a
generalized kinetic equation for the Kubo response
function £. The model satisfies the first two sum
rules for S(k,w), is consistent with the conserva-
tion laws, includes quasiparticle collisional ef-
fects, and yields the temperature dependence of
the width of the zero-sound resonance in a natural
manner. Results consistent with recent neutron
scattering experiments were found.
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APPENDIX

We wish to order the set {¢;} so that it is mani-
fest that in the Landau limit (¢ -0, w/v,k~0, and
T - 0), our expansion of ¢ is of the Landau form
(4.7) without the need for rearrangement. In this
limit, the Fermi factor F,(p) requires p=p,, and
¥, and ¥, coincide up to a normalization constant
with the =0 and /=1 Legendre polynomials. We
construct the {y;} so that they satisfy (4.10) and
(4.11). The function ¢, is written as a hnea,r com-
bination of ¢, and &,.

(p/b)?[3 cos?6 - 3b,(x)]
[N(O)N,(x) ]2 ’

where b,(x) is chosen so that i is orthogonal to ¥,.
N,(x) is the normalization constant and x=k/2p .
Note that the & dependence of ¥,(p) is suppressed,
and that ¢, is orthogonal to ¥,. It is elementary

_ but tedious to verify that '

by(x)=2[N,(1-*?)+ 1], (A2)

Us(p) = (A1)

and
Ny(x)=3{5(3 - b;)?[2(35%+ 1) + N, (x* = 1)?
+2(3-b,)[(3¥%+1) - N, (x* = 1)?]
+ON (1+3%%) (52° — 5) + 2= 227}, (A3)

1-N,1+2%)+(2- 2x%)c,

Since b (*=0)=1, it is clear that in the Landau
limit ¥, reduces essentially to the /=2 Legendre
polynomial.

We write ¢, as a linear combination of ¢, and
¢,, so that at =0 it reduces to the energy cur-
rent. The form of ¢, is

)=(p/pp)3 cosf[1+b,(x)]
[N(O x)]l/Z

AV (A4)

¥, is orthogonal to ¥, and ¥,; b,(x) is found by re-
quiring ¥, to be orthogonal to ¥,. The result is

by(x)=x2. (A5)

The normalization constant N,(x) is given by

N,(x) = 52%(=2 + 227 + %) . (A6)
We write ¢, so that it reduces to (p* - p%)/2m* at
k=0:

Uy(p) = (p/pp)? = [1+b,(x)]+ (P/D g, (%) ) (A7)

[N (0N, (x) M2

The functions b, and ¢, are chosen so that ¥, is
orthogonal to ¥, and ¢,. The results are

by(x) = N ) , (A8)
cy¥) _=2N, (¥~ 1)+ 2(5%° __1)21%;2__;5;&2(%952+ DN, (62 - 1] 49)
and
No(®) = 3(1+ 32 + 3N, (1= 292+ N, (14 b,)?
—(14+b)(L+N,) (1= x2) + 2¢,[(1 - x2)2 +38x% + 5x2(1 = x2) ] —2c,(1 + b,) (1+ 12%?) . (A10)
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