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We consider dynamic correlations in normal liquid *He following the kinetic theory approach
introduced in earlier work. The connection between the kinetic theory formalism and the Lan-
dau and polarization potential theories is discussed in detail and the approximations implicit in
the latter approach are pointed out. We present a phenomenological approach to the dynamic
memory function which incorporates finite frequency and wave-vector effects. This form of the
dynamic kernel is used to evaluate the shear viscosity, including contributions from nonlocal ef-
fects. Estimates of these contributions indicate that they are non-negligible. The consequences
of our method and its future application to the evaluation of collisional broadening of collective
modes observed in neutron scattering experiments are discussed.

I. INTRODUCTION

Recent measurements"? of inelastic neutron
scattering from liquid *He have stimulated renewed
interest in the theoretical description of the elementa-
ry excitations in normal Fermi liquids. Since a fully
microscopic treatment of the static and dynamic prop-
erties of strongly interacting quantum liquids is diffi-
cult, most of the advances in understanding these
properties have been from a semiphenomenological
point of view. Landau theory’ has provided a power-
ful description of the elementary excitations in the
limit of small wave vector k and low frequency .
However Landau Fermi-liquid theory is not applica-
ble for the values of k and w associated with the col-
lective zero-sound mode excited by coherent neutron
scattering. Pines and collaborators*> have used a po-
larization potential approach to study intermediate
wave-number phenomena not treated by the Landau
theory. Using small and large wave-number data as
input, this approach has been successfully used to
analyze the observed zero-sound dispersion at inter-
mediate k. The mechanism for the damping of zero
sound in the polarization potential approach is the de-
cay of zero sound into single particle-hole excitations.
It appears likely, however, that in the range of wave-
vector transfers of experimental interest, other
dynamical damping mechanisms (collisions and mul-
tiparticle processes) must be taken into account.

In this paper we continue our quantum kinetic
theory® approach to the dynamics of normal Fermi
liquids and develop a more realistic treatment of
quasiparticle collisions. In general the kinetic theory
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approach is characterized by a static ‘““memory func-
tion”” ¢ and a collisional memory function ¢,
The static term describes instantaneous mean-field
effects and reduces in the low temperature 7 and
long-wavelength limit to the Landau quasiparticle in-
teraction f,,,,'~ In our earlier work® (referred to in the

following as I) we considered this correspondence in
some detail and used it to formulate a phenomeno-
logical theory for qS(’) applicable at intermediate
wave vectors. The frequency-dependent term ¢ ‘©

. describes the effects of collisions and is a generaliza-

tion of the frequency and wave number-independent
Boltzmann-like collision integral considered in the
Landau theory. The simple phenomenological model
of ¢ adopted in I neglects the k and w dependence
of ¢(© and assumes that the zero sound damping
mechanism (in addition to Landau damping) is due
to quasiparticle collisions within kg T of the Fermi
surface. This thermal broadening of the quasiparti-
cles, however, does not play a dominant role in the
observed linewidth of zero sound at the wave vectors
and temperatures of experimental interest.’2 Hence
this simple model of ¢ is inadequate, and it is
necessary to develop an approximation for 9 which
includes nonlocal frequency and wave-number effects.

In Sec. Il we summarize the basic definitions
characterizing the formal aspects of the kinetic
theory. In Sec. IIl A we review our analysis of ¢‘®
and discuss the limits in which our analysis reduces
to the Landau theory. The analysis of the correspon-
dence between the two k-dependent phenomenologi-
cal parameters introduced in our model of ¢(’) and
the first two sum rules for the dynamic structure
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function S (k, w) is given in Appendix A. We for-
mally compare the kinetic theory and polarization po-
tential approaches in Sec. III B, show that the latter
approach implicitly assumes that ¢‘© can be neglect-
ed, and determine the correspondence between the
phenomenological parameters in the two theories. In
Sec. IV we develop a phenomenological model of ¢‘?
which includes binary quasiparticle collisions, incor-
porates nonlocal frequency and wave-number effects,
and which reduces to the Landau and weak-coupling
limits. As one test of this phenomenological form of
9 we calculated in Sec. V the local an nonlocal
contributions to the low-temperature shear viscosity
and find a result consistent with experimental values;
the nonlocal contribution is found to be non-
negligible. The details of the numerical calculation
are given in Appendix B. Finally in Sec. VI we indi-
cate how our approximate form for ¢‘? can be used
to calculate the zero-sound dispersion and linewidth.
A detailed calculation of the collisional broadening of
the zero-sound mode and a comparison with neutron
scattering results will be made in future work.

II. FORMAL DEVELOPMENT
A. Density fluctuations

The primary quantity of interest in this paper is the
dynamic structure function S (k, ) measured in
coherent inelastic thermal neutron scattering.2
Although S (k, w) is a measure of the local density

|

fluctuations, it is easier to construct a microscopic
theory for a larger class of fluctuations. Consequent-
ly we consider fluctuations in the ‘‘phase-space densi-
ty”’ or Wigner operator’ defined at time ¢ as

3. ot
xy(r 45050 @.1)

where the Heisenberg field operators ys(r,¢) and
lllT(r,t) satisfy the equal-time anticommutation rela-
tions for fermions. For simplicity we ignore spin un-
til Sec. II B and set # and the volume of the system
equal to unity unless otherwise noted. The usual
number density operator is obtained by integrating

f (rp,t) over all p:

E0uED = [dpr(F 50 . (2.2)

The dynamical fluctuations of a low-temperature
quantum fluid are frequently investigated in terms of
a generalized susceptibility X defined as

x(1,t =) =00 —'W (1L, £U,ND]) ,  2.3)

where (- ) denotes the thermal average in the
grand canonical ensemble specified by the inverse
temperature 8= (kzT)~! and chemical potential u.
In (2.3) ©(¢) is the usual step function, [ ] denotes
the commutator, and 1= (ry,p;), etc. The properties
of X are conveniently discussed in terms of its
transforms:

X(kpp'2) = [ a(r 1) expl =ik (F = F)1(=0) [ d(t =) expliz (e =) X1t 1) (2.4)
The relaxation or Kubo function® £ is defined in terms of X by

L(k,pp',z) =(Bz) ' x(kpp',z) —x(k,pp',z=0)] . (2.5)
The dynamic structure function S (k, w) can be related to '.C using the fluctuation dissipation theorem?® and is
given by

nS(k, w) = fd3p fd’p’ﬁw coth%(l +eR)y  ImE(k,pp',z=w+i0%) , (2.6)

where 7 is the equilibrium averaged density.

The function £ (k,pp’,z) among the various two-point quantum correlation functions is the one which satisfies
a well-behaved kinetic equation over a wide range of wave number, frquency, and temperature. The kinetic equa-

tion® for £ (k,pp’,z) has the general form’

l_("_‘ ’ -1 —_ o ’
2= =B o(kpp' )~ (kpp',2) ek pp' )= EChpp')
where @

L(kpp') =L (kpp',t =0)=—B""x(k,pp',z=0) .

2.8)

The z — Kk - §/m term in (2.7) describes the motion of

[
a single free-streaming particle of mass m. The
second term in (2.7) represents the effects of col-
lisions as £(k,pp’,z) evolves from its initial condition
L(k,pp'). The memory function ¢ separates natural-
ly into a sum of two terms,

o(kpp',z) =9 (kpp') + 99 (kpp'z) . (2.9)

The frequency-independent or *‘static’’ term ¢(¢
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describes instantaneous mean-field effects and leads at long wavelengths to ‘‘dressed’’ particles, i.e., quasiparticles.
An exact microscopic expression for ¢ is given by Eq. (3.16) of I, where it is also shown that this expression is

equivalent to the condition

(K- 5/m)x(kpp,"z =0) + 6 (k,pp)X(kpp',z2 =0) == 8(p —p ) f(p—3k) = f (p +5k)] . (2.10

The momentum distribution function f( p) is the
equilibrium average of the phase-space density opera-
tor

f(p)=(f(rpt)) . 2.11)

Equation (2.10) can be interpreted as either an initial
condition for £ [see Eq. (2.8)] in terms of ¢'® or as
an integral equation for ¢'¥. The latter interpretation
of (2.10) is preferable for classical systems for which
the momentum dependence of X and fis known.

The frequency-dependent term ¢ describes the
effects of collisions. The microscopic expression for
69 (k,pp’,z) can be written as®

6©9011,2) &(1,1) =-L,(11)L,(22) g(11,22,2) ,
(2.12)

where L, is the interaction part of the two-particle
Liouville operator and G represents the dynamical
evolution of two particles. The microscopic defin-
tions of L; and G are given in I. Equation (2.12) is
the basis of our phenomenological theory for o9
presented in Sec. IV.

B. Spin-density fluctuations

We briefly discuss the extension of the above for-
malism to spin % The spin-dependent Wigner
operators are defined as

dsl'l -7t 1
Fo(1,6) = —(7)36’ T e(r —5rt)
X Yolr +5r,1) (2.13)

where « is a spin index which is represented as { or
|. The definitions of the correlation functions can be
generalized in an obvious way, e.g.,

Xag(11,6 = 1) =0t — ') ([ fa(1,0),£6(1",t)]) .
(2.14)

The dynamic structure function S (k, ) becomes the
symmetric combination

S(k ) =31Sy(k ) +5y(k )] . (2.15)
The antisymmetric combination
Solk, w) =5[S(k @) =Sy (k w)] (2.16)

is associated with spin-density fluctuations. The total
differential cross section for the scattering of unpolar-

I
ized neutrons from liquid *He is

Sk, w) =Sk, w) +(oi/0)Ss(k,w) , (2.17)

where o; and o, are the incoherent and coherent
cross sections, respectively; the latter term in (2.17)
arises from incoherent scattering.

The formalism of Sec. Il A applies of £ and £,
separately. For example £, satisfies an equation of
the form (2.7) with memory function ¢,. Since the
interparticle potential in liquid *He is assumed to be
spin independent, the remaining complications of
spin can be taken into account by associating a factor
of 2 with each momentum integral. However, we
shall not explicitly include these factors in the follow-
ing unless otherwise noted.

III. PHENOMENOLOGICAL MEAN-FIELD THEORIES

The problem of calculating the dynamic structure
function S (k, w) has been shifted to calculating the
quantities f, ¢'¥ and ¢‘© which enter into the kinetic
equation (2.7) determining the Kubo response func-
tion. We consider first in this section the correspon-
dence of our formal development to Landau’s
phenomenological theory of a normal Fermi liquid.
This correspondence is used in Sec. III A to develop a
phenomenological theory of f and ¢'® which is appli-
cable to liquid *He at finite wave vectors. Our gen-
eralization of the Landau theory is compared to the
polarization potential approach? in Sec. IIIB. The
development of a phenomenological model for ¢‘® is
given in Sec. IV.

A. Static memory function and the Landau theory

In the Landau limit of low temperature, small wave
vector and low frequency, normal liquid *He can be
represented as a dilute gas of quasiparticles with an
effective mass m* different from the bare mass m of
an individual *He atom. Hence we assume that the
equilibrium one-particle distribution function f (p)
defined by (2.11) can be represented by

F(p)=Qm)explg(p?2m*—w)1+1}71 . (3.1

As inspection of (2.6) shows that for the particles to
acquire a mass m”*, ¢ must take the general form

—

E._‘ , kP '
¢(S)=_m_’p(p__p )+ m:) d)’*(k,PP) » (32)
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1 1 1

with m* independent of k and m''=m*1 —m~L.
The definition of ¢* in (3.2) allows us to rewrite
(2.10) as

x(k,pp',0) + ¢*(k,pp) X(k,pp',0)
=—F(p)s(p-p") , (33)

,_k
2

and f (p) is given by (3.1).

There is a close connection between the k —0 limit
of ¢*(k,pp’) and the Landau quasiparticle interaction
energy’ f,,,,'~ The connection can be made directly by
substituting (3.2) in (2.7) and ignoring ¢‘?. In this
way we obtain the usual (collisionless) Landau kinet-
ic equation with ¢*(0,pp’) identified with [, We
know that for an isotropic system and with p and p’
on the Fermi surface, fm, depends only on the angle
between p and p’ and can be expanded in Legendre
polynomials P, as

£=(O] S FP(GG5) (3.5)
]

where

k
+ K
2

Fe(p)=2"|f — /o . G4
k-p

The F, are the usual (dimensionless) Landau param-
eters; v(0) is the density of quasiparticle states at the
Fermi surface:

v(0) =m*pp/m? (3.6)

where pr is the Fermi momentum.

For k #0 we expand ¢*(k,pp’) in a manner analo-
gous to (3.5). That is, we represent ¢* in terms of
its matrix elements which reduce to the Landau
parameters in the k,7 —0 limit. Let us introduce a
linear vector space |p) satisfying

(plp"y=8(p—p ) Fc(p) , (3.7

PYF(P)] (5l=1 . (3.8)
For any function f(k,pp’,z) we define an operator
f«(2) such that

wlAi@D|p"y =1 (kpp',2) Fe(p) . 3.9)

The momentum-dependent basis functions y,;(k,p)
are defined as projections onto |p):

Fe(p)y;(kp) = (ilp) . (3.10)

We choose the set {i;} to be a complete set, normal-
ized with respect to Fi(p):

ik, p) U (k) F(p) =8, , (311

Elllf(k,P)wi(k,p')Fk(p)=8(p -p) . (3.12)

=1

The set {i;} is ordered such that the first five func-
tions (i =0, ... ,4) are proportional to the hydro-
dynamical functions corresponding to conservation of
particles, momentum, and energy. The explicit forms
of Yo and y; at T =0 are

wo(k) =[v(0)L(x)]7? , (3.13)
¥1(k,p) =13/v(0)12p cosb/pr , (3.14)
where
1 1-x* [14x
3 1+ Ix In =l x=1
L=l o1 | (3.15)

with x = k/2pr, and the z axis is along k. Note that
Yo is independent of p.

The above formal definitions allow us to
represent!® ¢*(k,pp’) as

¢*(k,pp') = 2¢,(k,p)¢,(k,p’)¢;;(k)Fk(p) ,
! (3.16)

where the matrix elements d),-}‘ are given by

bi(k) = fd3p d*p" i (k,p) g, (k,p')d* (k,pp ) Fe () .
3.17)

In analogy to the Landau theory in which the ex-
pansion (3.5) of f,, is truncated after the first two
terms, we consider the approximation in which only
the first two diagonal matrix elements in (3.16) are
retained. We first consider the spin-symmetric part
of ¢* and write

¢ (k,pp") =Lag(K)Y§ + oy (K) 4 (D) Y (p) 1 Fi(p) .
(3.18)

It is easy to see that ay(k =0) = F§ and

a;(k =0) =F{/3. This limiting behavior can be
determined by recalling the correspondence between
¢*(0,pp’) and f,, and noting that the angular depen-
dence of i and ¢ corresponds to the /=0 and /=1
Legendre polynomials. We could obtain the k depen-
dence of «y and «; through a direct experimental
determination of X(k,pp’,0) whose functional depen-
dence on ag(k), a;(k) is determined by (3.3) and
(3.18). Since such data are not available, we rely on
the sum rules

Ao gk w) =5k , (3.19)
= 217

and

2
JT 49 tanh B2 5 (k, ) = 2= (3.20)
—o 291 2 2m

to indirectly determine ag(k) and a;(k). We solve
for S (k, w) in terms of ag and «, using (2.6) and
(2.7) and the assumptions that ¢* is given by (3.18)
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and that ¢ can be neglected in this context. The
details of this solution are given in Appendix A. We
find that at 7 =0 within these approximations

S =—10(0)L (0
m

102 (y)(l +a0+a0a| +a102y2)
X r ly
Y [1+a010(y)+(1+ao)a|ll(y)]
(3.21)
and

k? _ Kk
5 ,,[1+a1(k)]—2m . (3.22)

m

The k- and y-dependent functions /o and /; are de-
fined in Appendix A; a*=3m"/k*p?. For k —0, we
can write (3.21) as

S(k) =a(3k/4pF) , (3.23)

where the constant a agrees with the prediction'! of
the Landau theory. The relation (3.22) together with
the Landau result m*/m = (1 + F${/3) implies that
within the present approximation

aj(k)=Fi/3 (3.24)

for k in the range considered. We use the measured
values'? of (k) at T ~0.4 K in the range 0.15 <k
=2.1 A~! and the value m*=3.08m as input to
determine the k dependence of ay(k) from (3.21).

A plot of ag(k)/L (k/2pr) is shown as the solid line
in Fig. 1. (The function ao/L rather than o itself is
shown in Fig. 1 in order to make a later comparison
to a corresponding phenomenological parameter in
the theory* of Aldrich and Pines.) It isoseen from Fig.
1 that ap has a maximum for kK ~0.8 A~! and goes to
zero as S (k) approaches unity for large k. The ex-
trapolated value of ap(k) to kK =0 agrees with

F§ =10.07 from the Landau theory. The parameter
ag(k) can be interpreted as the finite-k generalization
of F§.

The basic assumption in our determination of «g
and a; is the neglect of ¢'?, an assumption con-
sistent with Landau theory. We know from I that the
determination of ag and o is unchanged if ¢(© is in-
cluded in a frequency-independent approximation
[see (4.1) in Sec. IV]. However, in general the in-
clusion of a frequency-dependent ¢‘© would modify
the sum-rule determination of ag and «;.

The convergence of representations such as (3.16)
is well known in classical kinetic theory but is un-
known in the present context of the determination of
¢*. Our main assumption was to ignore all matrix
elements in (3.16) for i,j > 1. It would be possible
to retain additional matrix elements, e.g., ¢35, and ¢33
corresponding to the transverse momenta p, and p,
and ¢j4 corresponding to the energy, and to deter-
mine their magnitude from sum rules for the

1 1 1 1 | 1 1
0.2 04 06 08 10 1.2 14 16
k (R

FIG. 1. Top: The parameter ag(k) divided by L (k/2pg)
(solid line) as a function of k. The other two lines represent
[see Eq. (3.49)] the corresponding quantity from polarization
potential theory: the dashed line is from Ref. 4, the dash
dotted line from Ref. 14. Bottom: the same comparison for
a/(1+ap).

transverse-current correlation function and the sum
rule for S(k, ). However since a two-parameter
theory is known to give reasonable results in the
Landau limit, we postpone an investigation of the
higher-order matrix elements to future work.

We model the spin-antisymmetric part of ¢* in an
analogous manner to the symmetric part and write

¢5(k,pp’) =Bo(K)Y§ + B1(K) k(P Y (p) 1 F (p)
3.25)

where we have denoted the first two diagonal matrix
elements as By(k) and B,(k), respectively. The
parameters By and B; reduce at kK =0 to the spin an-
tisymmetric Landau parameters F§ and F{/3, respec-
tively. For k #0 the determination of By and B, is
limited by the fact that the k dependence of the in-
coherent or spin-symmetric static-structure function
S(k) is not accurately known at present. In addition
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no f-sum rule analogous to (3.20) can be used, since are determined in part by analogy to the correspond-
the spin current is not a conserved quantity. Hence ing effective interaction in liquid “He.
the procedure that we used to determine «p and oy In order to identify X, f%, and g§ with the micro-
implies only that Bo(k) —0 as S,(k) —1 for large scopic quantities appearing in the kinetic theory
enough k. The results* of Aldrich and Pines and the development, we formally solve (2.5), (2.7), and
investigations of other models'® indicate that 8y and (3.3) for x(k,pp',z). The reader not interested in this
B are slowly varying functions of k for k <2pr. formal derivation may skip to (3.47). We use the
Since we have no other a priori information on the k formal vector space introduced in (3.7)—(3.9) and
dependence of By and 8;, we assume that the definition (3.2) of ¢* to write (2.7) and (3.3) in
8o(K) =F8 operator notation as
Bi(k) =F§/3 , (3.26) [z —wc(1+¢8) — ()18, (2) =& , (3.28a)
for k <2pr. We find a posteriori in Sec. V this as- A +¢)x(z=0)=—F, , (3.28b)

sumption is consistent with experimental results for

ton | or using the relation (2.9)
the viscosity.

Li(2) =z — 0, (1 + &) — ()17 B (1 + ¢) 1F,

B. Comparison to the polarization potential approach (3.29)
o In the above (p|wi|p’) =(k-5/m*)8(p —p') Fi(p).
We now formally compare our kinetic theory ap- From (2.5) and (3.29) we have
proach to the polarization potential* method. In the
latter method the effects of the interaction are Xi(2) = [z — 0 (1 + @) — i (2)]7!
described in terms of k-dependent self-consistent © *y—1
fields. The basic assumption is that X(k,z) [see Eq. X loe + 67 (2) (1 + )7 F (3.30)
(3.31)] can be expressed as The quantity of interest X(k,z) is formally related to
X (k, the operator X,(z) by
x(k,z) = slh2) , (3.27)
1—[f8 + (2Y/ k) gi 1 X (K,2) f .
x(k,z2) = ) &p &p' (p|Xc(2)|pYF(p") 3.31
where X, is a screened response function. The P (@ p") F (0 ( )
phenomenological polarization parameters, f§ and gf, so that using (3.10) and (3.30) we obtain
]
X(k,z) =v(0)L (x) (0|[z — wi (1 + &) — {2 (2D 1wy + £ (2) (1 +62)711]0) . (3.32)

The condition for conservation of particles,
J @' %5 69 k) Ekip) =0

implies that the term £ (z) (1 +¢z)7!|0) in (3.32) can be omitted. Thus we have the simple but formal result

X(k,2) =v(0)L (x) (0][z — wi (1 + ) — 652 (2) 1w, [0) . (3.33)
I
Although (3.33) is completely general, we need to and
analyze it further in order to write it in the form © ) 4 .
(3.27). We write G (k2) = (i|lz —wr = 2 (D] wilj) . (3.35b)
wkdi +059(2) =wpdf + 34 (2) (3.34) then
where ¢7 is the operator analog of the approximation X(k,z) =v(0)L (x) Goo(k,2) . (3.36)

(3.18) to ¢5; the remainder of wxp; added to £ (z)
constitutes 2;(z). It is convenient to define a gen-
eralization of (3.33), e.g., the matrices Gy=GP +aGPGo,;+ GGy, , (3.37)
Gy(k,2) = (i|[z — we(1 + ¢ — 2 (D] i lj)

(3.35a) which can be solved for Ggq:

Gy and G,}O) are related by the system of equations

G (k,z) — a1 (k)N (k,2)

Goolkz) = 1 —ag(k) G (k,2) — a1 (k) G (k,z) + ap(k) ay (k)N (k,2)

(3.38)
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In the above N (k,z) can be expressed as

N(kz2) =G GY — G G4

(3.39)

We now show that we can express G, G{{, and G{ in terms of G’ and hence simplify (3.39). If we use
the identity z/(z —A) =1 +A/(z — A), we can rewrite G{Y’ defined in (3.35b) as

2G§Y (k,2) = (0] i [0) + (Olwi + 24 (2) [z — wp — e (2) ] i [0) . (3.40)

Using the fact that (0|3, (z) =0, which follows from
conservation of particles, and the property
(0] wi|0) =0 we can write (3.40) as

ZG()([())) (k,Z) = (Olwk[z — Wi Ek(Z)]_lwkl()) .

r

In the same way it can also be shown that

2
G (kz2) = %Gé&” (k,2)—

1 +%R (k,z)} . (3.44)
where

R(kz) = % (12 = wx = 56 (D17 5 (D |0)

(3.41) (3.45)
Since (p|wk|0) =k (p[1), where We substitute (3.43), (3.44), and a similar identity
for G¢? into (3.39) and obtain after some algebra
k= kpp/{m*[3L (x)]?) (3.42) that
we obtain the relation N(kz)=—G¢ (k,z2) . (3.46)
G (k) =Z2GQ (k2) . (3.43) The desired form for X(k,z) is obtained from (3.36),
10 z P (.2) (3.38), (3.44), and (3.46) and can be expressed as
J
Xsc( K,
X(k2) =~ selho2) , (34D
ay z ~17 -1 aj
— jap+ = , + ,
[1 ag TFa Xsc(kz)y(O) LG 1+a1R(kZ)
|
where compare it with f§. The dashed curve is taken from
. . 4 .
Xee(k,2) =v(0) L (x) G® (kz2) . (3.48) Aldrich and Pines® and the dash-dotted line from

A comparison of the formal exact result (3.47)
with the polarization potential form (3.27) shows that
the latter requires that R (k,z) =0. From (3.45) it
follows that 3,(2), i.e., #:9(2) plus the corrections
to (3.18), must be set equal to 0. Hence as expected
(3.27) represents a generalized mean field or random
phase approximation. The parameters f§ and g§ in
(3.27) are related to ao(k) and a;(k) by

ag(k) —v(0)L (X)) f} , (3.49)

a1 (k) nosm
T Ty 8k
1+ a1(k) m- m

(3.50)

Note that if one sets m*/m =1+ a;(k) in (3.50),
then a;(k) =(n/m)gi. However, this relation
between m* and «; is not exact at larger k.

It is interesting to compare using (3.49) and (3.50)
the k dependence of ag and «; determined approxi-
mately in Sec. IIl A with the k& dependence of the po-
larization potential parameters f§ and g§ determined
independently by Pines and collaborators.* In Fig.
1(a) we plot the quantity ag(k)/L (x) (solid line) and

Bedell and Pines.!* There is qualitative agreement
among the three plots. The form of f§ assumed by
Aldrich and Pines yields good agreement with experi-
ment for the dispersion relation of the zero-sound
mode, in contrast to the behavior of ay which leads
to a dispersion relation that is too high for k ~ pr.
The values of f§ used by Bedell and Pines to calcu-
late the transport coefficients have not been used!’ to
calculate the zero-sound dispersion relation. It would
appear that unless other polarization potential param-
eters such as the ‘“‘“multipair contributions” to X are
also modified, the agreement obtained by Aldrich and
Pines might be lost. In Fig.1(b) we compare
a;/(1 + ;) with ngi/m* and find qualitative agree-
ment. As discussed in Sec. III A, knowledge of the
high-frequency behavior of ¢(© would likely modify
the large-k behavior of ag and ;. The question of
whether development of a more realistic frequency-
dependent form for ¢ and further refinements in
the polarization potential theory will lead to closer
agreement of the two methods and to closer agree-
ment with experiment will be investigated in future
work.

The spin antisymmetric parameters B¢ and 8; can
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be related to f§ and gf in an analogous manner. In
both theories the determination of the spin antisym-
metric parameters is much more difficult and uncer-
tain. The form of f§ which yields the best values for
the transport coefficients'* is a slowly varying func-
tion of k in the range 0 < k < 2pr; gf is taken to be
identically zero* or a small quantity.!* These assump-
tions are consistent with our assumption (3.26). As
we discuss in Sec. V, the k dependence of By for

k > 2pr does affect the transport coefficients.

IV. COLLISIONAL PART OF THE
MEMORY FUNCTION

In our earlier work® the collisional part of the

memory function was represented by the simple form

4
¢ (kpp',z) =—it3'|18(p —p") = Jui (DY, (P Fe(p) |
i=0

4.1)
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where the relaxation time 7, is independent of k
and z and associated with the shear viscosity. The
form (4.1) is consistent with the conservation laws
and 1,‘,‘ is proportional to 72 for low 7. However, as
discussed in Sec. I, the width of the zero-sound reso-
nance as observed in the neutron scattering experi-
ments is dominated by the w dependence of ¢(©
rather than by its 7 dependence. Consequently we
wish to develop a phenomenological theory for ¢‘?
which includes finite k and w effects.

Let us first investigate the form of ¢‘© in the
weak-coupling limit. From (2.12) we know that the
combination

K(11',z)=¢©@1T1,2)L(11") , 4.2)

rather than ¢'© itself enters into the analysis. To in-
clude the effects of spin we write (for the symmetric
part of K)

K(11',2) =5 [Ky(11,2) + K (11,2)] . (4.3)

Since the weak coupling limit of K is similar to that
of Ref. 16, we only present the results here. We
write

-1
K (k,pp',z) =—132— fd3p1d3pzd3p3d3p4[§Wn(1234p)2+ W,,(1234p)211G (1234;K2) — G (1234, —k —2)] ,

(4.4)
where
Wn(1234p) =V (p1—p3) =V (p1—pa) 18(p —p1) + [V (p2—ps) — V(p2—p3)18(p — p2)
=[V(ps—p) = V(ps—p)18(p —p3) = [V (ps—p2) = V(psa—p)18(p —ps) , (4.5)
8(p1+pa—p3—ps+k)B(1234,k)
dez) = 3 - , 4.6
G(1234;kz) =(27) - E(1234.01E(1234.6) (4.6)
1 k L3 I Y. 4 I Y. 3 B Y. I .4 _k _k
B(1234,k)—2fp1+2f172+2f173 2f174 2 fP1+2fP2+2f113 2f.D4 2”, 4.7
and
1 k : k k ’ k ’
=— = +|p2+=| —lp3—=| — |pa—= . (4.8)
E(1234,k) o p1+2 P2t pi= D4 2] ]
I
We have used the notation which is a strongly coupled Fermi liquid. The next
-~ _ step in a complete theory is to develop a systematic
Sy =1-Q2m)f(p) , 4.9) approximate procedure for ¢(© applicable to realistic

where f(p) is given by (3.1) with m* replaced by m,
and V (k) is the Fourier transform of the interparticle
potential ¥ (r). W, has the same form as (4.5) ex-
cept for the absence of the exchange terms. Note
that in the limit k,z —0, K reduces to the familiar
Boltzmann collision kernel with the transition proba-
bility evaluated in the Born approximation.

The form (4.4) of K is not applicable to liquid *He

potentials. Although we have made some progress in
this direction, we proceed instead to use simple argu-
ments based on the weak coupling limit and the Lan-
dau theory to develop a phenomenological model of
¢'9 which is applicable to low-temperature liquid *He
and which retains nonlocal effects. We know that the
Landau collision integral® is of the Boltzmann form
with a screened quasiparticle interaction, e.g., the
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‘“‘bare’’ interaction F§ is replaced by F§/(1+F§). In conditions

grder to retain the simplicity of t}}e Landau colll(sx)op W (1234p) = — W (3412p) =— W (2134p) , (4.10)
integral, we assume a weak coupling form for ¢'¢ in . .

which the bare potential is replaced by an effective ‘{“d the requirement derived from number conserva-
interaction. Hence we assume that the form of K is tion

given by (4.4) with m replaced by m* in (4.8) for E d%p W (1234p) =0 411
and f(p) given by (3.1). A form of the effective in- f P 2 ’ @.11)
teractions Wy, and W, that satisfies the symmetry is given by

1
W (1234p) = 1 4|ps — oy =% py + £ |+ a|ps = prips + £ oy~ £ |[8(p 1)
2 2 2 2 2
k k
+A|pa—pip1+ 02—+ | +4 P4_Pz;113—£,114+£ 8(p —p2)
2 2 2 2
k k
—|4lpi—p3ps + L pi— £+ 4|p) —p3ipr — £ oy + £ |5 (p —p3)
2 2 2 2
k k
—|A|p2—pP4p3— PR + B +A|p2—pap: +§,P2 - % 5(p —174)} . (4.12)
I
The “‘scattering amplitude” 4 (g;p,p’) in (4.12) be exactly expressed!® in terms of C (k)
depends on the momentum transfer ¢ and the mo- £ 5
menta p and p’ of the incoming particles. The first 69 (k,pp') =— —p—C(k)nd)O(p) , (4.15)
term in (4.12) corresponds to the process in which m
particles of momenta p, —k/2 and p; +k/2 scatter where ¢o(p) is the Maxwellian. We ignore spin for
into final states p3 —k/2 and p, + k/2 with momen- the moment and generalize the relations
tum transfer p3—p;. In t,he weak coupling limit (4.13)—(4.15) so that 4, C, and € depend on p and p’
An(gpp')=V(g) =V (p'—p—q) and the form as well as g but retain essentially the same form. The
(4.12) for W reduces to (4.5); the weak coupling lim- generalized direct correlation function C (k,pp’) is
it of A1;(g.pp") =V (q). In general 4 also depends determined by comparing (4.15) with our approxi-
on the energy transfer. These dynamical effects are mate form (3.18) for the quasiparticle static memory
neglected here since they do not contribute to the function. We take
low-temperature transport coefficients.’ , ,
In order to determine the form of the effective in- C(k.pp") =— Laobo(P)Yo(p")
teraction 4 (g,pp’) between the quasiparticles, we use )

’ + F, s 4.16
an analogy’® between the form of 4 in the Landau o (P () 1Fi(p) ( )
theory and the screened interaction in the classical and use the analogies based on (4.14) and (4.15) to
electron gas. The simplest form!” of the static effec- write
tive interaction Vg for the latter system is , , _ _,

e Ak,pp ) Fe(p') == C(kpp)E (k,pp)™"  (4.17)
Ver(k) =—B71C (k) /e(k) , (4.13) .
with
where the static dielectric function e(k) is given by , , ,
E(kpp') =8(p—p')—C(kpp') . (4.18)
e(k)=1—nC(k) , (4.14)
In order to solve (4.17) for A (k,pp'), we evaluate
and C (k) is the direct correlation function. The E(k,pp') ' =1(k,pp') from (4.16) and (4.18).
static part of the classical memory function can also I1(k,pp') satisfies the equation
|
[8(p = P) + aoo(p) wo(P) Fi(p) + arp(p) (P Fe(p) 1 I (k,pp") =8(p —p') , 4.19)

which can be easily solved to find

j" Wo(P) Yo(p ) Fel(p) — —— 4 () () Fe(p) . (4.20)
[ %)) 1

1(k,pp") =E(k,pp') ' =8(p —p') —
+ oy

1
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We solve (4.17) for A (k,pp’) using (4.16) and (4.20) and obtain

aj
1+a1

2 (P wo(p) +

A(kpp') = TFas

1P i(p’) .

(4.21)

The spin can now be included using arguments similar to those in the Landau theory. We write

ag(k) , Bo(k)

Auv,(k,pp?= 14+ ag(k) i 1+Bo(k)

where oo’ =+1 or —1 for parallel and antiparallel
spins, respectively. Note that the parameter ag(k) is
“‘shielded”’ by [1 + ao(k)] and hence it is reasonable
to interpret ag as the finite k generalization of F3§.

Our result (4.22) for A4 is consistent with the Lan-
dau and weak coupling limits and retains the simplici-
ty of both. It is possible to include dynamical shield-
ing effects in 4 by introducing a frequency-dependent
dielectric function. We reserve a discussion of these
effects to future work.

V. LOW-TEMPERATURE SHEAR VISCOSITY

As one test of the phenomenological form of ¢
developed in Sec. IV we calculate the low-
temperature shear viscosity 7. We focus on this
transport coefficient since its finite k and o generali-
zation is related to the linewidth of the zero-sound
resonance in S (k, w). We evaluate n by calculating
the appropriate limit of the transverse momentum
correlation function. Because of the inclusion of
nonlocal effects in ¢'?, we obtain contributions to
the shear viscosity which have no counterpart in cal-
culations based on the local kinetic equation of Abri-
kosov and Khalatnikov.! We find that these nonlo-
cal effects are not negligible: depending on the
behavior of the functions «;(k) and 8;(k) for
k > 2pr they may increase the value of 5 to up to
twice its local value.

Since the details of the calculation are lengthy, we
present them in Appendix B. The formal analysis of
the relationship between the shear viscosity m and the
matrix elements of the memory function ¢ has been
performed by a number of workers.?*?! The rela-
tionship can be expressed as

n=n"+7n", 5.1

where

o *
n’=}imo—_':Tm (2|M (k, —i0*) QM ™ (k,i0*)

x QM (k,i0*)|2) , (5.2)

. *
n" = lim ’";(’;' (2IM (ki0M)[2) , (5.3)

a; (k) . Bi(k)
1+ a1(k)

]lllolllé +

UUW iy, 4.22)

r

where s, is proportional to p, and the operator M is
defined by

Mi(2) = MO + M + M9(2) (5.4)
with

(pIM®p") =%8(1) =P )Fe(p) = (ploclp’y ,

(5.5)
<p|Mk‘”|p'>=—“m4§¢*(k,pp')Fk(p’) , (5.6)
(P IMPD)p'y =99 (kpp',2) Fe(p') . (5.7)

The projection operator Q arises from the necessity
of isolating the hydrodynamic singularities in the
transverse current correlation function and is defined
by

4
0=1-31i)l . (5.8)
=0

The basis vectors |i) were introduced in Sec. III B.
We recall that the first five (i =0, . . ., 4) belong to
the five hydrodynamic states. A factor of m* rather
than m appears in (5.2) and (5.3), since the state |2)
refers to a quasiparticle transverse momentum.

At low temperatures, the ‘‘kinetic’’ term »’ dom-
inates the ““direct’” term n'". In the limit 7 —0 the
local contribution to n'(n.) can be found by
transforming (as done in Ref. 21) Eq. (5.2) into an
integral equation which, if the momentum flux ten-
sor is replaced by its local, free quasiparticle value,
reduces to the exactly soluble?? Abrikosov-
Khalatnikov!? transport equation. Since we wish to
investigate the nonlocal effects, we adopt the alterna-
tive approach of using the method of kinetic model-
ing? in Eq. (5.2). That approach has been used ex-
tensively in calculations of S (k, w), the physical
quantity of main interest.

The matrix representation of the memory function
is particularly useful for obtaining kinetic model?
solutions of (5.2). We use the function space de-
fined in Sec. III B to write

M (kpp's2) = 30 Yy (p') My(k2) Fe(p) , (5.9
]
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where the matrix elements M are defined as in
(3.17). A kinetic model of order N is constructed by
assuming that

MU=M”8U (510)

for all i or j > N. The simplest kinetic model corre-
sponds to the retention of only the first nonhydro-
dynamic matrix element Mss with the momentum
state ¥s o« p,p,. We substitute (5.10) with N =5 and
(5.9) into (5.2) and obtain

o *
mip = lim =S5 Mos (K,101)? Mss(k,i0%)

(5.1D)

The “‘one-polynomial’’ solution mi, to (5.2) corre-
sponds to the approximate Abrikosov and Khalatni-
kov!? solution for n, from the Landau theory. Since
in the limit 7 —0, the latter approximation for »,
overestimates the exact solution? of the Landau
theory by at most 25%, we might expect that nj,
overestimates (5.2) by the same order.

In general there are three contributions to the ma-
trix elements in (5.11) corresponding to the three
terms (5.4) in M. However, as expected, only M
contributes to the nonhydrodynamic matrix element
Mss. We show in Appendix B that in the limit k —0,
MEE can be written in the familiar form

M (k,i0*) =ir™" (5.12)

where the transverse relaxation time 7 is real and in-
dependent of k. The local and nonlocal contributions
to m’ arise from M4{® and M3€, respectively. Gen-
eral symmetry arguments can be used to show that
MS® vanishes identically. At 7 =0, M{® takes the
form

MS® (k) = kpp/m*5 | (5.13)

and in the limit k — 0, M4£ can be written as (see
Appendix B)

MEE (k,i0%) = kprA/m*~N5 . (5.14)

The dimensionless quantity A is real and independent
of k. We combine (5.11)—(5.14) and write 7, in the
more familiar form

nip=5mm*vE(1+4)2r (5.15)
where vy =pr/m*. Note that the form of (5.15) im-
plies that A can be interpreted as a ‘‘renormaliza-
tion”’ correction.

The evaluation of 7 and A is discussed in Appendix
B. We follow the method of Ref. 11 and express 7 in
the limit 7 —0 as a two-dimensional angular integral
corresponding to quasiparticle collisions with momen-
tum transfers ¢ =<2pr. The angular integrals are
evaluated numerically using as input the calculated
values of ag(g) (see Fig. 1), assuming that «; By,

and B; are independent of ¢ for ¢ < 2pr, and adop-
ting the numerical values?* a) = F{/3 =2.01,

Bo=F§ =-0.67, and B, =F§/3=-0.15. As dis-
cussed in Sec. III B, these assumptions are consistent
with those of Pines and co-workers.* The corre-
sponding local contribution to n’ is

n.T*=1.11 P(mK)? . (5.16)

Since ao/(1 +ag) =1 for ¢ < 2pr, n; is insensitive to
the magnitude of «ay; in contrast n, depends sensi-
tively on the values of B¢(g) near g =2pp.

At T =0 the form of the nonlocal contribution A
to ' can be reduced to a one-dimensional integral
over all ¢ and involves the phenomenological param-
eters ag, ay, Bo, and B; and their derivatives. For
q < 2pr we assume the same g dependence of these
parameters as in the calculation of 7 and obtain
A . =0.56. Since the usual calculations of the low-
temperature transport coefficients only involve
momentum transfers g < 2py, little is known about
the g dependence of the parameters ag, a;, By and B
for ¢ > 2pr except that they all approach zero for
q >> 2pr. For this reason we can only estimate A
and hence A with much uncertainty. The depen-
dence of A on different assumed ¢ dependences of
the phenomenological parameters is discussed in Ap-
pendix B, where it is shown that reasonable bounds
for the ¢ > 2pr contribution are +0.02 > A, >
—0.38. We adopt as an estimate of A the value
A, =-0.05. This value corresponds to assuming that
the magnitudes of ag, Bo, and B; decrease linearly
with increasing g and that all equal zero for
g > 2.2pr. The latter value of g is obtained by linear
extrapolation of the ao(gq) dependence shown in Fig.
1. The g dependence of «; is assumed to be negligi-
ble in the range 2pr <q <2.2pr. Our estimate for A
with the above assumptions is A=A, +A=0.5
which yields the value nT?=2.5 P(mK)2 The lower
bound to 572, consistent with the smallest value of
A, is nT?=1.55 P(mK)2. The values are consistent
with recent experimental measurements.”> As indi-
cated earlier, retention of additional matrix elements
would likely reduce the magnitude of n7? somewhat.

On the basis of the above result for n we conclude
that our model for ¢>(‘) is at least qualitatively correct
and that nonlocal corrections to the low-temperature
transport coefficients cannot be neglected. There is
currently some uncertainty in the experimental value
of m*/m and a value of m*/m =2.12 has been pro-
posed.?® (But see also Ref. 27.) If we use the dif-
ferent?® set of Landau parameters associated with the
latter value of m*/m we obtain a value of 1 which is
lower than (5.16). In order to obtain agreement with
experiment, the nonlocal contribution would have to
be somewhat larger and hence the parameters «;(q)
and B,(¢) would depend more strongly on q.
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V1. DISCUSSION

We have seen that it is possible to develop a simple
model for the dynamics of liquid *He based on a gen-
eralized kinetic theory approach. The relationships
between this approach and the Landau® and polariza-
tion potential* theories were established and the
mean-field nature of the latter was emphasized. The
local and nonlocal contributions to the low-
temperature shear viscosity of liquid *He were calcu-
lated using as input the values of the quasiparticle ef-
fective mass, the static structure function, and the
spin-antisymmetric Landau parameters F§ and F¥.
Reasonable agreement with experimental measure-
ments of the shear viscosity was obtained, and the
nonlocal contribution appears to be non-negligible.
The main quantitative uncertainties in our present
model arise from the unknown k dependences of our
k # 0 generalizations of F§ and Ff.

Since the present calculation of the shear viscosity
indicates that our simple form for the collisional part
of the memory function is qualitatively correct, we
plan to use the present formulation to calculate the
dynamic structure function S (k, »). This calcula-
tion2® would involve a kinetic model solution of the
generalized kinetic equation (2.7) similar to that per-
formed for the viscosity except that matrix elements
such as M;ss(k,z) must be evaluated at k,z 0. Such
a calculation would be of particular interest since the
zero-sound mode in S (k, w) as observed by neutron
scattering!’2 occurs at intermediate values of k and o
beyond the range of applicability of the Landau
theory. Most of the presently available*?° calcula-
tions of neutron scattering from liquid *He are based
on generalizations of the random phase approxima-
tion and hence the linewidth of zero sound in these
calculations arises only from the decay of zero sound
into single particle-hole excitations (Landau damp-
ing). However in the range of k, and T of experi-
mental interest, neither this decay process? nor ther-
mal broadening effects dominate the observed
linewidth. The available experiments imply that the
observed linewidth results from the decay of zero
sound into multiparticle excitations.? Hence in the
language of kinetic theory the observed zero-sound
linewidth is associated with the nonlocal, k, and @
dependent behavior of the collisional part of the
memory function due to incomplete quasiparticle col-
lisions.
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APPENDIX A: DETERMINATION OF SPIN-SYMMETRIC
PHENOMENOLOGICAL PARAMETERS

As discussed in Sec. III A, the phenomenological
parameters ao(k) and «;(k) are determined from the
sum rules (3.19) and (3.20) for S(k, ). In this con-
text the moments of S (k, w) are obtained assuming
that ¢‘9 can be neglected and that ¢* is given by the
two-parameter approximation (3.18). In order to ob-
tain the moments of S (k, w), we first solve for
S(k,pp’, ») defined by [see (2.6)]

nS (k,pp’, w) = Bw coth%ai(l +ePw)1

xIm&(k,pp', w+i0%) . Al

We follow the same formal procedure as in Sec. III B,
and obtain from (2.7) and (3.2) the result that for
¢(c) =0

nS (k,pp’, ) = ‘n'coth%ui(l +e7Aw)1
x (p|8(w— (1 + 6 FRp)

(A2)
where

(ploklp’) =wc(p)8(p —p) Fe(p")
F=aw(p)F(p) ,

and
wr(p) =Kk -p/m* .

The evaluation of the first moment

$1(k) = fd3p d*p’ f%w tanh—’;ﬁS(k.pp’,w)

(A3)

is straightforward. [We omit in (A3) and in the fol-
lowing all factors of 2 associated with the spin.] We
obtain from (A2), (A3), and the matrix representa-
tion (3.16) of ¢* that at T=0

nS1(k) =% fd3p wi(p)2F(p)

+1 S o)A AR (A4)
i

where

A = [ & ) ui(p) Filp) .
(A5)

If we use the orthonormality condition (3.11) on y;
and the relation ¢; « wi(p) [see (3.14)], it is easy to
show that (A4) reduces to (3.22) with «;(k)

=@} (k). Note that (3.22) holds regardless of the
number of matrix elements retained in ¢*.



25 DYNAMIC CORRELATIONS IN FERMI FLUIDS 1675

The evaluation of the zeroth moment, to write $(k,pp’) at T =0 in the from
SCkpp') =287 (plox (1 +¢3) |7)
S(kpp')= [ 4 ' od
Stk = [ 525 Gpp'o) . x 3B (5o 2mn/B)Fp) . (AD)
n=1
. where
involves the solution of a set of coupled equations.
We use (A2) and the representation B(pp'.y) = (p|[{lor(1 + )12+ p') . (A8)
- If we substitute the approximate form (3.18) for
cothx=L+2X g __ 1 (A6) ¢*(k,pp’) into (A7), it is straightforward to show
x w5 (x/m)2+n? that

SCkpp") =So(kpp") =287 wr(p)2F2(p") 3, B*(pp'.yn) [ak (p)? + 21!

+2B87'FA(p)FA(p") 2 2 aipi(p)Bi(p'.yn) (A9)
n i=0,1

where y, =2mn/B. So(k,pp’) is the noninteracting quasiparticle limit of S (k,pp’) and is given by

Solk,pp') =2B87"F(p)8(p —p") Jlex(p)?+y21~T. (A10)

The functions B* and B; and (A9) are defined as
3(p—p') —wr(p)B*(pp',y)

B(pp',y)= All
pp'y or(p) 1y (A11)
Bi(p'.y)=vi(p)B(pp'.y) . (A12)
If we also define
Cp' )= w(F)B(Bp'y) , (A13)
and substitute (3.18) into (A8), we find that B* can be expressed as
B‘(pp',J’) = 2 ai'«”i(p)Fk(p) Ci(p') + 2 [wk(p)8U+a/AU]Bj(p') , (A14)
i=0, 1 J=0,1
where B; satisfies the coupled equations
lll/(p) ajwk(ﬁ)dl,(ﬁ)dlj(ﬁ)pk(ﬁ) _
B(p)= - Cp)+ 3 lon(F) s +achrlBp)]| | (A15)
P wr(p)?+y? J-%l wr(p)r+y? g e-%.l g ! he e
with
Ay=wi(B)Y(P) Y, (P F(p) . (A16)

C; satisfies an equation similar to (A15) with y;(p) replaced by wi(p)¢;(p).
It is straightforward but tedious to solve the above goupled equations for By, By, Cy, and C, and to substitute
these solutions into (A14) and (A9). The result for S(k,pp’) can be expressed as

SCkpp') =Solk,pp’) +2B7 FR(p) FA(p")
ped 1

2 21-1 72 21-1
A T Fala 0 T (T aah Gy [+ (P 01 (P 454

x (= agydlox (P or(p’) =yl — arpn (p) Y1 (p) [k (p) wi(p) — ¥ — agaiwk (p)

X [we(p) + 0r(p )]+ aparpdlw (p)2+ 211 (yn) —wi (P ) L(y) 1} (A17)



1676 ORIOL T. VALLS, HARVEY GOULD, AND GENE F. MAZENKO 25

where

Li(ky) = lwp(5)? + 1w (5)? ¥a(F)*Fi(P) .
(A18)

If we integrate (A17) for S(k,pp’) over the momen-
ta, take the limit 7 —0 and convert the sum over n
into an integral, we find the result (3.21) for the
structure function S(k) in terms of ag(k) and
a;(k).

APPENDIX B: EVALUATION OF MATRIX ELEMENTS

We present some of the techniques used to evalu-

ate the matrix elements of M9 discussed in Sec. V.
|

Note that from (5.7), M, is related to ¢ rather
than the combination K [see (4.2)]. However, in the
determination of M3 and M{§, the simple form of
L given by (2.8), (3.3), and (3.18), implies that K
can be replaced by —87'¢'? (kpp) Fe(p'). All nu-
merical factors associated with the spin are explicitly
given. Thus for example (3.1) for f(p) becomes

f(p)=3Qm)H(ehP 2™ w L)1 (B1)

M{® and hence 7 can be found from (5.7), (5.12),
(4.4), and (4.6). We have

%=Im[622 S 0 0 ws(o) s K 00100 (B2a)
71 =—2mN}2’ fd3p,d3p2d3p3d3p4[§W,,I,'(1234)2+ wH(1234)%]
x 3Q2m)°8(p1+p2—p3—p)dle+ e — e — ) (e + & — €3 =— €) !
xs LW r@QFBF@-F)FRFB3) @], (B2b)
where
Wa(1238) = [ @p pop. W (1234p) , e=p¥2m" . (B3)
The normalized form of ys at 7 =0 is
¥s(p) = Nspxp, = [15/v(0)1p,p,/p? . (B4)

The factor of % associated with the momentum & function in (B2b) is a consequence of conservation of total spin
of the interacting quasiparticles. The explicit form of W, is evaluated from (4.12) and can be written as

W(1234) = p1p1.(p1xP12 + PoxP2: — P3xP3: — PaxPaz) LA (p1—p3.p1p2) + A (pr—p3,pipa) 1 . (BS)

The energy & function in (B2b) and the symmetry of the integrand imply that one can replace:

SR @D -FDFQ)r3)fM4)

—Bf(MFQQ)FB)F(4)o(e1+e,—€3—€4) =

(B6)

€ te;—€3— €

In order to avoid the factors of 2 and 2 associated with f (p), we introduce the usual Fermi distribution func-

tion

n(p) =lexplB(p?/2m* — )1 +1}71 ,
so that from (B1)

fp)=532m>3np) .

(B7a)

(B7b)

If we substitute (B5) and (B6) into (B2b) and use (B7) and /i(p) =1—n(p), we obtain

I =BNZ(2m)®2 fd3p1 ’prd’p3 dp4 (P1x012) (P1xP1z + P2xP2: — P3xD3: — PaxPa)

x8(p1+pr—p3—p)dle1+e—e3—e)n(1)n(2)A(3)7(4)

X % {%[A 1(p1=pap1p2) + A1 (pr—p3.p3pa) 1P +1A4 1 (p1—p3.p1p2) + A1 (p1—p3.p3pa) 17} .

(B8)

The right-hand side of (B8) can be evaluated in the 7 —0 limit by the method of Abrikosov and Khalatnikov.!®

We define the dimensionless energies
t=B>e;—u), x=B~(es—p), y=Blea—p) ,

(B9)
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and the angles: 6 and ¢, are the polar and azimuthal angles of p, with respect to p; 6, and ¢; are the same angles
of p; with respect to k (the z axis); ¢ is the angle between the planes determined by p,, p,, and p3, ps. This
choice of variables allows us after some algebra to write the 7 — 0 limit of (B8) as

12T N2m*piv(0)~2(2m) 8
xj::dtj:dxj:dyn<t)n(x+y-t)n—n(x)m—n(y)l
2w d0sind . 2m 2m A
x J) do [T S2500 [T aoising: ) dds [, doapdis

X (ﬁlxﬁlz +ﬁ2xﬁ2z _ﬁlxﬁh _pAdxﬁ"z)

1 42
X l?“n

+47,

.0 .
2 s1n—2— sm—glpy

2 sin% sin-g)—pp , (B10)

where n(x) =(e*+1)7, pis a unit vector and all factors of pr and v(0) are explicitly included. The form of
A, /(g in (B10) is found from (3.13), (3.14), and (4.22) to be

A (=48 (9) — 547" () , (B11)

oo 4
with

, (9) (q)

487 (9) =L~"(q/2p5) 1:"0‘;’((1) +”'1f°,30q(q)] (B12)

and
o‘c' _ al(q) , Bl(q)
AP (q) =3 T+ ar(2) oo 1+Bl(¢l)] v (B13)

The limits of integration over the energy variables ¢, x, and y can be extended to — oo, and the energy integrals in
(B10) can be done exactly*® to yield 2 72 The angular integration over ¢ can be performed using an identity

due to Sykes and Brooker?? with the result

2m 2w
. A a (a & ia oA A A s oA 3
’0 d0isinéy | déy ) dbr51xh1:(Prubiz +PoxPr: — PsxPs: — PaxPar) = 5w’ sin Esmzi cos % . (B14)

We use the above results and let /2 — 0, ¢/2 — ¢ to write (B10) as

4 2T2
L ST (B15)
PF
where
R s n .2 24 42 s
AW,=_I: d@sin 0}: d¢sin’¢ cos’pA? , (2sinfsingpr) . (B16)

Then, using (5.16) and (B15) and inserting the appropriate factors of # and kg, we find that the local contribution
to the viscosity can be expressed as

(2 2))-1 ' (B17)

1
n T =<nm* U[:

where A = %)\n + Ay The angular integrals in (B16) are evaluated numerically using the values of the parame-
ters ag, Bo, a1, and B; discussed in Sec. V. We find the result A =0.204 +0.645 =0.849 from which is found the

numerical value given in (5.17) for n,.
In the same manner the nonlocal matrix element M££ has the form

M9 (k2) =22NaNs [ dpy dpy dpad®ps 13 WJ1(1234) W1(1234) + WH(1234) WH(1234)]
x [G(1234,kz) —G (1234, —k —2)] , (B18)
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where

We= [ &p pw(1234p) (B19)
and N,=1[3/v(0)1"2p7'. In order to extract the leading k dependence of M$f we write [see (4.6)—(4.8)]

G(1234, +k +2) =+ (27)%6+(1234) H+(1234) [ £z — E+(1234) ], (B20)
where

8+(1234) =8(p1+py—p3—patk)=8tkd +- -, (B21)

H+(1234) =B (1234, +K)E~' (1234, + k) =Hy+kH,+ - - - , (B22)
and

E3'(1234) =E(1234, + k) '=Eq" +kE{" +- - - . (B23)

We substitute (B20)—(B23) in (B18) and obtain to O (k)
M39 (k,i0*) =—2N,Ns(2m)? fd3p, dpy d’py dpy [ WI1(1234) WiI(1234) + W]1(1234) Wil (1234)]
x [2mi8oHo8(Eo) +2k (81 HoEG" +80H\Eq" +8HoET')] . (B24)
The form (4.12) of W implies that W,8,=0, and hence only the term proportional to 8; in (B24) is nonzero. If

we substitute the explicit forms of Hy, Eg, Ny, and Ns, write W, 8, =— W28, with WZ=dW,/dp,,, let
T =7P3—P1=D2— D4 and use the definition (5.14) of A, we can express (B24) as

&’q d’p, d’p,
A=—15n" f Ty [5 W (a.p1p2) Wil (g.p1p2) + Wi (g.p1p2) Wil (g,p1p2)]

x[n(p)n(p)i(pi+@)i(py—q) —a(p)A(p)n(pr+@n(p,— T (F,—P1) —¢?17? (B25)

with all momenta in units of pr. Wi(q,p1p2) and W (g,p1p;) can be written as

—_ = —+ 4xq. dAO(q) o dAl(q)
Wi(T, 5152) = — +a(q, p1p2)
dq dq
9P q q-p2 q 2¢Ix(1z N (p2—p1):
t (D@t Tt Gl 5| - (q'pl)(q'pz)+qx—2—— . (B26)
z zZ
We T, 7192) =lax(p2—p1): +@:(p2—p1)x —24x4;1[40(q) + 41(9) A (T, 51D ] , (B27)
where
a(a,sl'ﬁz)=—222[qZ(a'az—a-sl)+2<a—'ﬁ,)<a~§2)-q"1 . (B28)

The functions 4¢(q) and 4,(q) in (B26) and (B27) are defined in (B11) and (B12), respectively. The two prod-
ucts of statistical factors in (B25) can be combined by noting that W, — W, and W,, — W,, under the change of
variables py —P1+7, P.—P2— 1, and § —— . The integration over the momenta in (B25) can be facilitated
by introducing the additional variable v=q - P +¢?%/2 and writing A as

~-307T r dvf(z )3 T”(q, v)+TN(q,v)] (B29)

where

ap’ n(p)i(p'—q) Wilq,pp') We(q,pp")

(B30)
Q2w)? (- P—q%2-v)?

T(q,v)=f(2 10+ 08— F -/ [

If we substitute (B26)—(B28) into (B30), T (g, v) can be expressed in terms of the functions
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ap (G-P)pln(p)i(p—q)

REi= , B31

Qm)  (§-F—q¥2—v)? (B31)

P""=fﬂ—(é-f)‘)"p'"n(p)ﬁ(p +9)8(v—q-P—q%¥2) . (B32)
nm (2")3 X,2

We write R, =R}z, P,= P}z, use the identity Ry, = (gx/q)™R,+n and analogous identities for RZ, and PZ,, and
find after much algebra that

T(q,v) = 2D D o) + A T(a ] (833)
q dq dq
where
To(q,v) =Po(q.v)R(q,v) , (B34)
T\(q,v) = (+v*/q*— ¢*/4) Po(q, v)R,(q, v) + (v/q) Po(q, v)Ry(q, v) . (B35)
The functions R, and R, are defined as
Ri(q,v)=Ri(qv)—(v/q+q/2)Ro(q,v) , (B36)
Ry(q,v) =R,(q,v) —2(v/q +q/2)Ri(q,v) +(v/q +q/2)*Ro(q,v) . (B37)

Pg can be evaluated analytically at 7 =0 using either geometrical arguments or a general method due to duBois!
to satisfy the constraints p <1, |p +¢|>1, and p-q§+¢%2=v. The result is (note that all momenta are in
units of pr)

@721 - (v/g -39, 3e*+a=v=34"—q; ¢ =2
Po(g,v) =1(872%) ' [1 - (v/g = 3¢)?], ¢+3q*=v=q—5q% q <2 (B38)
w(8nlg) !, 0sv<qg-—q¥2;, ¢q=<2 .

The evaluation of R; and R, at T =0 is also straightforward. We have
Ri(g=2)=—(4nq) M (v/g + ) + 11— (v/g + 01 nl(v/g + 3¢ + 1) /(v/g + 3¢ —D1) ,  (B39a)

Ri(g<2)=—(4m2g)! (%(v +q) +vin(v/q) +%[1 —(v/q +%q)2] In(v/q +—;-q +1)

— 2= (/g -39 nv/g— g +D) (B39b)
Ry(q=2) =(4n%q) ' 3q(1—q¥12) , (B40a)
Ry(g <2)=(4r%g)7'3 . (B40b)

The simple v dependence of Ty and T, given above allows us to perform the v integration in (B29) analytically.
We find after tedious algebra that the matrix element A can be reduced to

=izl +alh +aff +ah1 (B41)
where
o/_ oo' i m‘r’ anr/
887 = J) da alo(a) 457 (D=L 1AS” (@) + 477 ()] (B42)
G‘I_ 0'0', d 0'(7’ o !
ar' = Jdg an ()4 (@) 51467 (@) +477 ()] . (B43)
The functions Jy and J; can be expressed as
Jo(g=2) =502 (2 +¢) +q (55 - 37—+ + o) (1 +2/)— (5 - 2¢* + +¢°— 54 In(1-2/9) ,

(B44a)
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1 1
Jolg<2) =g (% q -9 3P n2+q(F +3q — 550 +550°) In(1 +34)

1

(B44b)

46 6 1 8 2 1 1 1
Wg=) =559+ 54¢ — 554 +a (555 — 59>~ 5+ 554° — 559") In(1 +2/9)

8 2

1 1 1
—¢(35 — 30 +30 50"+ 59 In(1-2/q)

29

=B 32
NWg<D =359~ 579 s

3 1 1 3_ 3 5,1 1 -
+a( — 59+ 70~ 169 t5me ) In(1-2/q) .

Note that Jo and J, and their first derivatives are
continuous at ¢ =2.

The one-dimensional integrals in (B42) and (B43)
are performed numerically using as input the
phenomenological parameters «p, ), Bo, and B; and
their derivatives. The known ¢ dependence of «y and
the weak g dependence of «y, By and B, for ¢ <2 al-
lows us to estimate the contribution to A with some
degree of confidence. We find that the contribution
to A from g =<2 is A =0.56 with the ¢ dependence
of the phenomenological parameters assumed to be
the same as in the calculation of 7. For ¢ > 2 we
determine the g dependence of ag by linear extrapo-
lation of its behavior near ¢ =2; we set ap=0 for
q >2.2. The q dependence of a;, By and B; for
g > 2 is not known. In order to estimate the contri-

sy 1 14,3 3
+154 — 50 In2+q (55

(B45a)

1 L3p 3 5Lt 1
+?q-—1—2q +—1-50—q 672q)ln(1+2q)

(B45b)

I
bution to A from ¢ > 2, we determine the sensitivity
of A, to variations in these parameters. (Note that
A5 =0 if all the phenomenological parameters were
assumed to be independent of ¢.) The simplest as-
sumption is that «;, By and B, are relatively constant
for 2 > g > 2.2 so that the only contribution to A
arises from the decrease in «p in this range. The
result is A5, =+0.02. More realistic assumptions for
the g dependence of By and B; cause A to be nega-
tive. For example, if we assume that By and 3; de-
crease linearly (in magnitude) with constant slope 8,
we find that A5 depends weakly on & and that

A5 = —0.3. Another assumption is that 8y and B8,
decrease linearly with slopes §p and 8;. If we deter-
mine 8y and 3; by requiring that both By and B, be-
come zero for ¢ =2.2, we obtain A, =—0.05.
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