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How does the distribution of wealth arise from
microeconomic interactions?

N agents with wealth wi and
∑N

i=1 wi = N .

Chose two agents at random and winner with
probability 1/2.

Transfer fraction p of the poorer agent’s wealth from
the loser to the winner.

What is the resulting wealth distribution?

Counterintuitive result: One agent continues to gain
almost all the wealth and all others have almost none.

2 / 17



How does economic growth and its distribution affect
the distribution of wealth?

After N exchanges a fraction µ of the total wealth is
added to the system (geometrical growth).

Additional wealth given to agent i :

∆wi(t) = µW (t)
wλ
i (t)∑N

i=1 w
λ
i (t)

W (t) =
N∑
i=1

wi(t)

λ ≥ 0 is a distribution parameter.
After distribution rescale wi so that

∑
i wi = N .
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A rising tide lifts all boats for λ < 1
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Steady state rescaled wealth distribution versus rank for λ = 0.2
(•), 0.4 (N), 0.6 (�), and 0.8 (×). Wealth distribution less
equal as λ→ 1−.
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Qualitatively different behavior for λ < 1 and λ ≥ 1

λ < 1

No wealth condensation.

Rescaled wealth distribution reaches a steady state.

Greater wealth equality as λ→ 0.

Economic mobility: richer agents become poorer and
vice versa.

System in thermal equilibrium.

λ ≥ 1

Wealth condensation as in model without growth, no
mobility, no steady state.
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Critical slowing down: Lifetime of richest agent
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τ ∼ (1− λ)−1.

Existence of critical slowing down limits simulations near λ = 1−.
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Equilibrium – not just steady state

E =
1

N

∑
i

w2
i Total energy

P(E ) = Ω(E )e−βE Probability density
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N = 5000, λ = 0.5. (a) P(E ) for p = 0.1. (b) P(p = 0.1)/P(0.097).
Equilibrium more difficult to verify as λ→ 1.
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Phase transition at λ = 1 is critical point

Phase transition is continuous with critical exponents
that characterize the transition.

Susceptibility χ: Fluctuations of order parameter.

Order parameter: Fraction of wealth held by all
agents but the richest.

Simulations for N = 5000, µ = 0.1. Exponents
independent of µ.
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Critical exponents for constant N

βN = 0, γN = 2, αN = 3, αN + 2βN + γN 6= 2.

Total energy diverges as λ→ 1−.
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Fits assume E ∼ (1− λ)−1 and αN = 3.
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Mean-field theory

Mean-field theory based on exchange of wealth
between agent chosen at random and agent whose
wealth equals mean wealth of the remaining agents.

Mean-field theory self-consistent if

Ginzburg parameter G = Nµ(1− λ)� 1

and held constant as λ→ 1.

Predictions: β = 0, γ = 1, α = 1, α + 2β + γ = 2.

Total energy approaches a constant as λ→ 1−.

Time scale for critical slowing down

τ ∼ (1− λ)−1.
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Constant Ginzburg parameter

500 ≤ N ≤ 20000 and 0.996 ≤ λ ≤ 0.800, G = 10.
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Fit assumes χ ∼ (1− λ)−1.
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Energy and specific heat
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Fits assume E/N ∼ const + (1− λ).

C ∼ (1− λ)−1.

E ∝ N only if G held fixed.
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Discussion

Numerical results for exponents consistent with
mean-field theory predictions.

No wealth distribution leads to wealth condensation.
All benefit if distribution favors wealthy and λ < 1.

System becomes more mean-field as N →∞.

As globalization increases, do mean-field models of
the global economy become more relevant?

Wealth of the richest agent grows exponentially if the
system is “quenched” from λ < 1 to λ > 1. Further
evidence that the transition can be interpreted as a
spinodal in the mean-field limit.

13 / 17



Discussion and future work

Because the model is in equilibrium for λ < 1, are there
aspects of the economy that are treatable by equilibrium
statistical mechanics?

The mean-field theory yields a stochastic differential equation
with both additive and multiplicative noise.

If only additive noise is retained, critical exponents can be
predicted and wealth distribution is Gaussian.

If both types of noise are included, numerical solutions show
that wealth distribution is log-normal, consistent with the
agent-based simulations. Can we obtain an analytical
solution?

Make contact with economic data. Preliminary work suggests
λ ≈ 0.8.

Generalize the model so that growth is not imposed externally.
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